Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemistry
2.2. Antioxidant Activity
2.3. DPPH Inhibitory Assay
2.4. ABTS Activity
2.5. Anti-Inflammatory Activity
2.6. 5-Lipoxygenase (5-LOX) Enzyme Inhibitory Assay
2.7. Inhibitory Assay for Cyclooxygenase (COX-2) Enzyme
2.8. Determination of TPC and TFC in C. macrophylla Bark
2.9. HPLC Chromatograms of Phenolic Acid and Flavonoid
2.10. Molecular Docking
3. Materials and Methods
3.1. Plant Materials
3.2. Extraction and Fractionation
3.3. DPPH Assay
3.4. ABTS Assay
3.5. In-Vitro Cyclooxygenase (COX−2) Assay
3.6. In-Vitro 5−LIPOOXYGENASE (5−Lox) Assay
3.7. Estimation of IC50 Values
3.8. Phytochemistry (GC−MS Analysis)
3.9. Total Phenolic Content (TPC) Analysis for C. macrophylla Bark
3.10. Total Flavonoid Content (TFC) Analysis for C. macrophylla Bark
3.11. HPLC Analysis for Phenolic and Flavoinds Compounds
3.12. Molecular Docking
3.13. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Jan, M.S.; Rashid, U.; Sadiq, A.; Alqarni, A.O. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: Molecular docking based synergistic effect of the identified compounds. J. Ethnopharmacol. 2021, 273, 113976. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Wills, C. A Computational Study of Intervertebral Disc Degeneration in Relation to Changes in Regional Tissue Composition and Disc Nutrition. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2015. [Google Scholar]
- Pervaiz, A.; Jan, M.S.; Hassan Shah, S.M.; Khan, A.; Zafar, R.; Ansari, B.; Shahid, M.; Hussain, F.; Ijaz Khan, M.; Zeb, A. Comparative in-vitro anti-inflammatory, anticholinesterase and antidiabetic evaluation: Computational and kinetic assessment of succinimides cyano-acetate derivatives. J. Biomol. Struct. Dyn. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Márquez Martín, A.; De La Puerta Vázquez, R.; Fernández-Arche, A.; Ruiz-Gutiérrez, V. Supressive effect of maslinic acid from pomace olive oil on oxidative stress and cytokine production in stimulated murine macrophages. Free. Radic. Res. 2006, 40, 295–302. [Google Scholar] [CrossRef]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of chronic inflammation in aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Khan, Z.; Jan, M.S.; Ahmad, S.; Ahmad, A.; Rashid, U.; Ullah, F.; Ayaz, M.; Sadiq, A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2, 5-dione and thiazolidine-2, 4-dione derivatives. Bioorganic Chem. 2019, 91, 103128. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid. Based Complementary Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J. Inflamm. Res. 2018, 11, 307. [Google Scholar] [CrossRef] [Green Version]
- Kuruppu, A.I.; Paranagama, P.; Goonasekara, C.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J. 2019, 27, 565–573. [Google Scholar] [CrossRef]
- Yatoo, M.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders—A review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Shah, S.M.M.; Ahmad, Z.; Yaseen, M.; Shah, R.; Sadiq, A.; Khan, S.; Khan, B. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of Cornus macrophylla Wall bark collected from the North-West of Pakistan. Pak. J. Pharm. Sci. 2015, 28, 23–28. [Google Scholar] [PubMed]
- Noshiro, S.; Baas, P. Latitudinal trends in wood anatomy within species and genera: Case study in Cornus sl (Cornaceae). Am. J. Bot. 2000, 87, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Clay, S.N.; Nath, J. Cytogenetics of some species of Cornus. Cytologia 1971, 36, 716–730. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.-Y.; Thomas, D.T.; Zhang, W.; Manchester, S.R.; Murrell, Z. Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence—Implications for taxonomy and Tertiary intercontinental migration. Taxon 2006, 55, 9–30. [Google Scholar] [CrossRef]
- Sung, Y.-H.; Chang, H.-K.; Kim, S.-E.; Kim, Y.-M.; Seo, J.-H.; Shin, M.-C.; Shin, M.-S.; Yi, J.-W.; Shin, D.-H.; Kim, H. Anti-inflammatory and analgesic effects of the aqueous extract of corni fructus in murine RAW 264.7 macrophage cells. J. Med. Food 2009, 12, 788–795. [Google Scholar] [CrossRef]
- Riha, S.M.; Maarof, M.; Fauzi, M.B. Synergistic effect of biomaterial and stem cell for skin tissue engineering in cutaneous wound healing: A concise review. Polymers 2021, 13, 1546. [Google Scholar] [CrossRef]
- Henson, P.; Larsen, G.; Henson, J.; Newman, S.; Musson, R.; Leslie, C. Resolution of pulmonary inflammation. Fed. Proc. 1984, 2799–2806. [Google Scholar] [CrossRef]
- Schmid-Schönbein, G.W. Analysis of inflammation. Annu. Rev. Biomed. Eng. 2006, 8, 93–151. [Google Scholar] [CrossRef] [Green Version]
- Vareed, S.K.; Schutzki, R.E.; Nair, M.G. Lipid peroxidation, cyclooxygenase enzyme and tumor cell proliferation inhibitory compounds in Cornus kousa fruits. Phytomedicine 2007, 14, 706–709. [Google Scholar] [CrossRef]
- Vareed, S.K.; Reddy, M.K.; Schutzki, R.E.; Nair, M.G. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sci. 2006, 78, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Yoon, K.-R.; Lee, E.; Cha, Y.-Y. Anti-inflammatory effect of Cornus walteri. J. Physiol. Pathol. Korean Med. 2011, 25, 982–988. [Google Scholar]
- Barut, B.; Didem, S. Total phenolic content, cyclooxygenases, alpha-glucosidase, acetylcholinesterase, tyrosinase inhibitory and DPPH radical scavenging effects of Cornus sanguinea leaves and fruits. J. Res. Pharm. 2020, 24, 623–631. [Google Scholar]
- Malarvizhi, D.; Anusooriya, P.; Meenakshi, P.; Sowmya, S.; Perumal, P.C.; Oirere, E.K.; Gopalakrishnan, V.K. Antioxidant properties and analysis of bioactive compounds present in n-hexane root extract of Zaleya decandra. Int. J. Pharm. Sci. Rev. Res. 2015, 34, 118–123. [Google Scholar]
- Atsumi, T.; Fujisawa, S.; Tonosaki, K. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol. In Vitro 2005, 19, 1025–1033. [Google Scholar] [CrossRef]
- Yahyaoui, A.; Khedher, O.; Rigane, G.; Salem, R.; Moussaoui, Y. Chemical analysis of essential oil from Echinops spinosus L. roots: Antimicrobial and antioxidant activities. Rev. Roum. Chim 2018, 63, 199–204. [Google Scholar]
- D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef]
- Tandon, V.R.; Verma, S.; Singh, J.; Mahajan, A. Antioxidants and cardiovascular health. J. Med. Educ. Res. 2005, 7, 115–118. [Google Scholar]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.-H. Aging: A revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp. Gerontol. 2007, 42, 256–262. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, P.; Lee, K.D.; Song, C.E.; Ilavenil, S.; Srigopalram, S.; Arasu, M.V.; Choi, K.C. Quantification of major phenolic and flavonoid markers in forage crop Lolium multiflorum using HPLC-DAD. Rev. Bras. Farmacogn. 2018, 28, 282–288. [Google Scholar] [CrossRef]
- Bajkacz, S.; Baranowska, I.; Buszewski, B.; Kowalski, B.; Ligor, M. Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS method. Food Anal. Methods 2018, 11, 3563–3575. [Google Scholar] [CrossRef] [Green Version]
- Ngo, Y.L.; Lau, C.H.; Chua, L.S. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem. Toxicol. 2018, 121, 687–700. [Google Scholar] [CrossRef]
- Sadiq, A.; Zeb, A.; Ahmad, S.; Ullah, F.; Ayaz, M.; Ullah, F.; Ali, N.; Ahmad, J.; Khan, F.A. Evaluation of crude saponins, methanolic extract and subsequent fractions from Isodon rugosus Wall. ex Benth: Potentials of anti-angiogenesis in egg and anti-tumorigenesis in potato. Pak. J. Pharm. Sci. 2019, 32, 1971–1977. [Google Scholar] [PubMed]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I. Treating hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front. Chem. 2020, 8, 558641. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Jan, M.S.; Hussain, F.; Zafar, R.; Rashid, U.; Abbas, M.; Tariq, M. Antioxidant Molecules Isolated from Edible Prostrate Knotweed: Rational Derivatization to Produce More Potent Molecules. Oxid. Med. Cell. Longev. 2022, 2022, 3127480. [Google Scholar] [CrossRef]
- Sadiq, A.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Rashid, U. Tailoring the substitution pattern of Pyrrolidine-2, 5-dione for discovery of new structural template for dual COX/LOX inhibition. Bioorganic Chem. 2021, 112, 104969. [Google Scholar] [CrossRef]
- Al-Joufi, F.A.; Jan, M.; Zahoor, M.; Nazir, N.; Naz, S.; Talha, M.; Sadiq, A.; Nawaz, A.; Khan, F.A. Anabasis articulata (Forssk.) Moq: A Good Source of Phytochemicals with Antibacterial, Antioxidant, and Antidiabetic Potential. Molecules 2022, 27, 3526. [Google Scholar] [CrossRef]
- Zafar, R.; Ullah, H.; Zahoor, M.; Sadiq, A. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complementary Altern. Med. 2019, 19, 296. [Google Scholar] [CrossRef] [Green Version]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Alqahl, S.A.; Ullah, F.; Sadiq, A.; Zeb, A.; Ghufran, M.; Kuraev, A.; et al. HPLC-DAD phenolics analysis, α-glucosidase, α-amylase inhibitory, molecular docking and nutritional profiles of Persicaria hydropiper L. BMC Complementary Med. Ther. 2022, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alqarni, A.O.; Alyami, B.A.; Jan, M.S.; Ayaz, M.; Ullah, F.; Rashid, U.; Sadiq, A. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: In-vitro and molecular docking approaches. BMC Complementary Med. Ther. 2021, 21, 270. [Google Scholar] [CrossRef] [PubMed]
S. No. | Name | Molecular Formula | Retention Time | Peak Area | Conc. (%) |
---|---|---|---|---|---|
1 | n-Hexadecanoic acid | C16H32O2 | 25.46 | 1,187,841 | 17.94 |
2 | 10-Undecenal | C11H20O | 28.827 | 54,996 | 8.29 |
3 | Acetin | C5H10O4 | 9.154 | 38,196 | 6.62 |
4 | 1,2-Bis(acetyloxy)ethyl acetate | C8H12O6 | 9.237 | 23,706 | 6.4 |
5 | alpha-Cadinol | C15H26O | 19.179 | 290,208 | 4.38 |
6 | tau-Cadinol | C15H26O | 18.884 | 249,188 | 3.76 |
7 | Tridecanoic acid, methyl ester | C14H28O2 | 24.766 | 241,744 | 3.65 |
8 | Undecanoic acid | C11H22O2 | 16.899 | 214,503 | 3.24 |
9 | 6-Octadecenoic acid, methyl ester, (Z)- | C19H36O2 | 28.109 | 163,759 | 2.47 |
10 | alpha-Curcumene | C15H22 | 15.136 | 158,324 | 2.39 |
11 | 7-Acetyl-2-hydroxy-2-methyl-5-isopropylbicyclo [4.3.0]nonane | C15H24O2 | 20.992 | 146,133 | 2.21 |
12 | delta-Cadinene | C15H24 | 16.137 | 141,079 | 2.13 |
13 | Epiglobulol | C15H26O | 18.081 | 139,893 | 2.11 |
14 | Aromadandrene | C15H24 | 13.726 | 135,498 | 2.05 |
15 | tau-Cadinol | C15H26O | 22.285 | 133,874 | 2.02 |
16 | 1H-3a,7-Methanoazulene, octahydro-1,4,9,9-tetramethyl- | C15H26 | 19.538 | 127,638 | 1.93 |
17 | n-Hexadecanoic acid | C16H32O2 | 21.328 | 127,019 | 1.92 |
18 | Phenol,3,5-bis(1,1-dimethylethyl)- | C14H22O | 15.747 | 119,639 | 1.81 |
19 | 9,12-Octadecadecenoicacid, methyl ester, (E,E)- | C19H34O2 | 27.991 | 115,490 | 1.74 |
20 | 4,4,8-Trimethyltricyclo[6.3.1.0(1,5)]dodecane-2,9-diol | C15H26O2 | 23.823 | 107,229 | 1.62 |
21 | Docosanoic acid, ethyl ester | C24H48O2 | 26.102 | 106,583 | 1.61 |
22 | Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol, 4,4-dimethyl- | C15H24O | 18.789 | 100,854 | 1.52 |
23 | 9-Octadecynoicacid | C18H34O2 | 29.31 | 98,021 | 1.48 |
24 | alpha-Calacorene | C15H20 | 16.622 | 93,806 | 1.42 |
25 | alpha-Bisabolol | C15H26O | 19.777 | 76,084 | 1.15 |
26 | 6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl | C15H24O | 20.034 | 73,381 | 1.11 |
27 | Caryophyllene oxide | C15H24O | 18.701 | 68,151 | 1.03 |
28 | 7,9-Dimethyl-8-nitrobicyclo[4.3.1]nonane | 22.481 | 66,616 | 1.01 | |
29 | Isoeugenol | C10H12O2 | 14.274 | 65,947 | 1 |
30 | Caryophyllene oxide | C15H24O | 17.606 | 64,742 | 0.98 |
31 | 1-Tetracosanol | C24H50O | 22.068 | 63,996 | 0.97 |
32 | tau-Muurolol | C15H26O | 19.602 | 60,852 | 0.92 |
33 | (+)-Nerolidol | C15H26O | 17.003 | 60,228 | 0.91 |
34 | Cholesta-8,24-dien-3-ol, 4-methyl-,(3.beta,4.alpha.)- | C28H46O | 17.654 | 51,339 | 0.78 |
35 | 1.bet.-Cadin-4-en-10-ol | C15H26O | 18.977 | 51,532 | 0.78 |
36 | Phenol,2-methyl-5-(1,2,2-trimethylcyclopentyl)-,(S)- | C15H22O | 21.181 | 44,799 | 0.68 |
37 | (-)-Spathulenol | C15H24O | 17.453 | 39,071 | 0.59 |
38 | Ergost-5-en-3-ol, acetate, (3.beta,24R)- | C30H50O2 | 22.769 | 34,906 | 0.53 |
39 | alpha-Caryophyllene | C15H24 | 14.544 | 34,316 | 0.52 |
40 | Cis-Z-alpha-Bisabolene epoxide | C15H24O | 18.204 | 32,640 | 0.49 |
41 | gamma-Muurolene | C15H24 | 15.954 | 29,904 | 0.45 |
42 | Zingiberene | C15H24 | 15.44 | 20,949 | 0.32 |
43 | n-Decanoic acid | C10H20O2 | 12.117 | 20,817 | 0.31 |
44 | Bicyclo[4.1.0]-3-heptne, 2-isopropenyl-5-isopropyl-7,7-dimethyl- | C15H24 | 20.869 | 20,664 | 0.31 |
45 | Copaene | C15H24 | 12.632 | 13,217 | 0.2 |
46 | Copaene | C15H24 | 16.486 | 12,827 | 0.19 |
47 | Cubenol | C15H26O | 18.306 | 6420 | 0.1 |
Samples Names | Concentration (µg/mL) | % DPPH Activity | IC50 (µg/mL) | % ABTS Activity | IC50 (µg/mL) |
---|---|---|---|---|---|
Crude | 1000 | 92.23 ± 0.22 ns | 17.72 | 83.13 ± 0.80 *** | 19.34 |
500 | 87.45 ± 0.90 ns | 78.83 ± 0.73 *** | |||
250 | 81.90 ± 0.60 ns | 72.70 ± 0.51 *** | |||
125 | 76.00 ± 0.30 ns | 66.43 ± 0.70 *** | |||
62.5 | 71.90 ± 0.45 ns | 61.06 ± 0.70 *** | |||
n-Hexane | 1000 | 87.63 ± 0.64 *** | 20.76 | 89.37 ± 0.54 ns | 16.76 |
500 | 82.45 ± 0.5 ns | 84.44 ± 0.50 ns | |||
250 | 76.53 ± 0.4 ** | 77.51 ± 0.72 *** | |||
125 | 71.42 ± 0.46 *** | 72.28 ± 0.61 *** | |||
62.5 | 65.68 ± 0.64 *** | 67.46 ± 0.62 *** | |||
Dichloromethane | 1000 | 93.10 ± 0.60 ns | 5.34 | 82.33 ± 1.20 *** | 4.06 |
500 | 87.58 ± 0.63 ns | 76.33 ± 0.95 *** | |||
250 | 83.76 ± 0.71 ns | 72.67 ± 0.91 *** | |||
125 | 75.44 ± 0.58 ns | 70.00 ± 0.17 *** | |||
62.5 | 68.10 ± 0.90 * | 68.60 ± 0.04 *** | |||
Ethyl Acetate | 1000 | 94.40 ± 0.03 ns | 7.8 | 86.91 ± 1.30 *** | 9.54 |
500 | 85.03 ± 2.16 ns | 81.26 ± 1.27 *** | |||
250 | 80.90 ± 1.11 ns | 76.00 ± 0.30 *** | |||
125 | 76.44 ± 0.28 ns | 71.54 ± 0.50 *** | |||
62.5 | 71.22 ± 0.47 ns | 68.76 ± 0.58 *** | |||
Aqueous | 1000 | 84.37 ± 0.64 *** | 16.4 | 86.91 ± 1.30 *** | 12.43 |
500 | 80.45 ± 0.65 *** | 81.26 ± 1.27 *** | |||
250 | 73.37 ± 0.54 *** | 76.00 ± 0.30 *** | |||
125 | 67.30 ± 0.61 *** | 71.54 ± 0.50 *** | |||
62.5 | 62.42 ±0.55 *** | 67.76 ± 0.58 *** | |||
Ascorbic Acid | 1000 | 94.40 ± 0.03 | 4.32 | 91.90 ± 0.96 | 3.11 |
500 | 85.03 ± 2.16 | 87.08 ± 0.47 | |||
250 | 80.90 ± 1.11 | 82.40 ± 0.20 | |||
125 | 76.44 ± 0.28 | 77.61 ± 0.43 | |||
62.5 | 71.22 ± 0.47 | 75.45 ± 0.90 |
Compound Name | Concentration (µg/mL) | COX-2 Percent Inhibition | IC50 | 5-LOX Percent Inhibition | IC50 |
---|---|---|---|---|---|
(µg/mL) | (µg/mL) | ||||
Ethyl Acetate | 1000 | 69.62 ± 0.58 *** | 93.35 | 71.24 ± 0.79 *** | 75.64 |
500 | 63.35 ± 0.23 *** | 65.43 ± 1.39 *** | |||
250 | 57.36 ± 0.84 *** | 59.48 ± 0.25 *** | |||
125 | 52.62 ± 0.25 *** | 54.47 ± 0.04 *** | |||
62.5 | 46.16 ± 0.16 *** | 47.47 ± 0.44 *** | |||
Crude | 1000 | 69.67 ± 0.32 *** | 130.02 | 67.44 ± 0.09 *** | 122.79 |
500 | 63.20 ± 0.10 *** | 61.87 ± 0.39 *** | |||
250 | 55.09 ± 0.32 *** | 55.83 ± 1.07 *** | |||
125 | 49.67 ± 1.20 *** | 50.23 ± 0.44 *** | |||
62.5 | 43.40 ± 0.25 *** | 44.29 ± 0.43 *** | |||
n-Hexane | 1000 | 69.58 ± 1.12 *** | 249.57 | 71.33 ± 0.49 *** | 218.83 |
500 | 61.65 ± 1.34 *** | 63.03 ± 0.23 *** | |||
250 | 47.90 ± 0.96 *** | 49.00 ± 0.58 *** | |||
125 | 39.03 ± 0.48 *** | 42.67 ± 0.89 *** | |||
62.5 | 31.90 ± 0.48 *** | 33.00 ± 1.15 *** | |||
Aqueous | 1000 | 66.79 ± 0.63 *** | 319.7 | 67.73 ± 0.03 *** | 277.91 |
500 | 59.67 ± 0.61 *** | 57.42 ± 0.12 *** | |||
250 | 41.69 ± 0.77 *** | 47.39 ± 0.35 *** | |||
125 | 35.54 ± 0.50 *** | 41.36 ± 0.71 *** | |||
62.5 | 29.00 ± 0.30 *** | 29.15 ± 0.22 *** | |||
Dichloromethane | 1000 | 71.02 ± 1.32 *** | 72.55 | 77.00 ± 0.15 *** | 49.52 |
500 | 66.69 ± 0.33 *** | 69.26 ± 1.55 *** | |||
250 | 61.14 ± 0.60 *** | 65.89 ± 0.49 *** | |||
125 | 56.44 ± 0.84 *** | 58.36 ± 0.71 *** | |||
62.5 | 47.72 ± 0.48 *** | 51.47 ± 0.42 *** | |||
Celecoxib | 1000 | 81.85 ± 0.18 | 21.58 | ||
500 | 76.59 ± 0.30 | ||||
250 | 69.75 ± 0.14 | ||||
125 | 64.47 ± 0.49 | ||||
62.5 | 61.02 ± 0.22 | ||||
Montelukast | 1000 | 83.53 ± 0.20 | 17.3 | ||
500 | 78.62 ± 0.17 | ||||
250 | 73.42 ± 0.11 | ||||
125 | 66.20 ± 0.15 | ||||
62.5 | 62.00 ± 1.15 |
Phytochemical Assays | C. macrophylla Bark |
---|---|
Total phenolic content (TPC) GAE/5g | 18.52 ± 0.34 |
Total flavonoid content (TFC) QUE/5g | 32.18 ± 0.52 |
S. No. | Name of Compound | Binding Energies with COX-2 Enzyme | Binding Energies with 5-LOX Enzyme |
---|---|---|---|
1 | Debezylhydrazine | −7.9 | −7.5 |
2 | n−Decanoic acid | −6.9 | −5.6 |
3 | Copaene | −4.4 | −3.8 |
4 | Aromadandrene | −5.4 | −4.2 |
5 | Isoeugenol | −6.1 | −6.6 |
6 | alpha−Caryophyllene | −5.0 | −4.6 |
7 | alpha−Curcumene | −7.0 | −5.7 |
8 | Phenol,3,5−bis(1,1−dimethylethyl)− | −7.6 | −8.2 |
9 | gamma−Muurolene | −6.0 | −5.3 |
10 | delta−Cadinene | −5.8 | −5.5 |
11 | alpha−Calacorene | −5.7 | −5.1 |
12 | Undecanoic acid | −7.3 | −6.2 |
13 | (+)−Nerolidol | −7.0 | −5.0 |
14 | (−)−Spathulenol | −4.8 | −3.9 |
15 | Caryophyllene oxide | −4.4 | −4.3 |
16 | Cholesta−8,24−dien−3−ol, 4−methyl,(3.beta.,4.alpha.)− | −6.6 | −5.9 |
17 | Epiglobulol | −5.5 | −3.9 |
18 | Cis−Z−.alpha−Bisabolene epoxide | −7.2 | −5.7 |
19 | Cubenol | −4.3 | −4.6 |
20 | Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan−9−ol, 4,4−dimethyl− | −4.3 | --- |
21 | 1H−3a,7−Methanoazulene, octahydro−1,4,9,9−tetramethyl− | −4.1 | --- |
22 | alpha−Bisabolol | −6.4 | −7.3 |
23 | 6,10−Dodecadien−1−yn−3−ol, 3,7,11−trimethyl | −6.3 | −5.2 |
24 | Bicyclo[4.1.0]−3−heptne, 2−isopropenyl−5−isopropyl−7,7−dimethyl− | −6.8 | −5.5 |
25 | 7−Acetyl−2−hydroxy−2−methyl−5−isopropylbicyclo[4.3.0]nonane | −7.2 | −8.1 |
26 | Tetracosanol | −6.7 | −6.0 |
27 | Ergost−5−en−3−ol, acetate, (3.beta,24R)− | −6.8 | −6.1 |
28 | 4,4,8−Trimethyltricyclo[6.3.1.0(1,5)]dodecane−2,9−diol | --- | −5.5 |
29 | Tridecanoic acid, methyl ester | −7.3 | −7.1 |
30 | Docosanoic acid, ethyl ester | −7.0 | −6.2 |
31 | 9,12−Octadecadecenoicacid, methyl ester, (E,E)− | −6.2 | −5.5 |
32 | 6−Octadecenoic acid, methyl ester, (Z)− | −8.1 | −5.3 |
33 | 10−Undecenal | −6.3 | −5.4 |
34 | 9−Octadecynoicacid | −6.8 | −6.5 |
35 | tauCadinol | −6.3 | −6.4 |
36 | Copaene | −4.4 | −3.8 |
37 | alpha−Cadinol | −6.8 | −5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Pervaiz, A.; Ansari, B.; Ullah, R.; Shah, S.M.M.; Khan, H.; Saeed Jan, M.; Hussain, F.; Ijaz Khan, M.; Albadrani, G.M.; et al. Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules 2022, 27, 4081. https://doi.org/10.3390/molecules27134081
Khan A, Pervaiz A, Ansari B, Ullah R, Shah SMM, Khan H, Saeed Jan M, Hussain F, Ijaz Khan M, Albadrani GM, et al. Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules. 2022; 27(13):4081. https://doi.org/10.3390/molecules27134081
Chicago/Turabian StyleKhan, Ali, Aini Pervaiz, Bushra Ansari, Riaz Ullah, Syed Muhammad Mukarram Shah, Haroon Khan, Muhammad Saeed Jan, Fida Hussain, Mohammad Ijaz Khan, Ghadeer M. Albadrani, and et al. 2022. "Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark)" Molecules 27, no. 13: 4081. https://doi.org/10.3390/molecules27134081
APA StyleKhan, A., Pervaiz, A., Ansari, B., Ullah, R., Shah, S. M. M., Khan, H., Saeed Jan, M., Hussain, F., Ijaz Khan, M., Albadrani, G. M., Altyar, A. E., & Abdel-Daim, M. M. (2022). Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules, 27(13), 4081. https://doi.org/10.3390/molecules27134081