Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage
Abstract
:1. Introduction
2. Results
3. Experimental Section
3.1. Preparation of Porous Sn/C Composite
3.2. Materials Characterization
3.3. Electrochemical Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Sun, X.; Hao, G.-P.; Lu, X.; Xi, L.; Liu, B.; Si, W.; Ma, C.; Liu, Q.; Zhang, Q.; Kaskel, S.; et al. High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J. Mater. Chem. A 2016, 4, 10166–10173. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources 2011, 196, 6688–6694. [Google Scholar] [CrossRef]
- Saddique, J.; Zhang, X.; Wu, T.; Wang, X.; Cheng, X.; Su, H.; Liu, S.; Zhang, L.; Li, G.; Zhang, Y.; et al. Enhanced silicon diphosphide-carbon composite anode for long-cycle, high-efficient sodium ion batteries. ACS Appl. Energy Mater. 2019, 2, 2223–2229. [Google Scholar] [CrossRef]
- Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M.R. Beyond intercalation-based Li-Ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192. [Google Scholar] [CrossRef]
- Magasinski, A.; Dixon, P.K.; Hertzberg, B.; Kvit, A.; Ayala, J.D.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358. [Google Scholar] [CrossRef]
- Cao, Y.; Qian, J.; Ai, X.; Yang, H. Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. J. Mater. Chem. 2010, 20, 7266–7271. [Google Scholar]
- Ge, J.; Tang, Q.; Shen, H.; Zhou, F.; Zhou, H.; Yang, W.; Hong, J.; Xu, B.; Saddique, J. Controllable preparation of disproportionated SiOX/C sheets with 3D network as high-performance anode materials of lithium ion battery. Appl. Surf. Sci. 2021, 552, 149446. [Google Scholar] [CrossRef]
- Heitsch, A.T.; Akhavan, V.A.; Korgel, B.A. Rapid SFLS synthesis of Si nanowires using trisilane with in situ Alkyl-Amine passivation. Chem. Mater. 2011, 23, 2697–2699. [Google Scholar] [CrossRef]
- Su, W.; Liang, Y.; Tang, Y. Facile situ synthesis of C@SnO2/Sn@rGO hybrid nanosheets as high performance anode materials for lithium-ion batteries. J. Alloys Compd. 2019, 801, 402–408. [Google Scholar] [CrossRef]
- Yi, Z.; Han, Q.; Zan, P.; Wu, Y.; Cheng, Y.; Wang, L. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. J. Power Sources 2016, 331, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Kwon, C.W.; Kim, H.; Toupance, T.; Jousseaume, B.; Campet, G. Chapter 5—Fluorine-doped tin oxide electrods for lithium batteries. In Fluorinated Materials for Energy Conversion; Nakajima, T., Groult, H., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2005; pp. 103–123. [Google Scholar]
- Zheng, T.; Xing, W.; Dahn, J. Carbons prepared from coals for anodes of lithium-ion cells. Carbon 1996, 34, 1501–1507. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Fan, X.; Gou, L.; Wang, J.; Li, Y.; Lu, X.; Li, Q. Facile synthesis of Sn–C nanocomposite as an anode material for lithium ion batteries. J. Alloys Compd. 2012, 516, 33–37. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, J.; Wang, S.; Zhang, Y.; Zhang, Y.; Dong, P.; Zhou, Z.; Xia, S. Tin-based negative electrodes with oxygen vacancies embedded through aluminothermic treatment process for lithium-ion battery materials. Ionics 2021, 27, 533–540. [Google Scholar] [CrossRef]
- Saddique, J.; Zhang, X.; Wu, T.; Su, H.; Liu, S.; Zhang, D.; Zhang, Y.; Yu, H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. J. Mater. Sci. Technol. 2020, 55, 73–80. [Google Scholar] [CrossRef]
- Kravchyk, K.; Protesescu, L.; Bodnarchuk, M.I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M.V. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-Ion battery anodes. J. Am. Chem. Soc. 2013, 135, 4199–4202. [Google Scholar] [CrossRef]
- Xu, L.; Kim, C.; Shukla, A.K.; Dong, A.; Mattox, T.M.; Milliron, D.J.; Cabana, J. Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. Nano Lett. 2013, 13, 1800–1805. [Google Scholar] [CrossRef]
- Yi, Z.; Tian, X.; Han, Q.; Lian, J.; Wu, Y.; Wang, L. Synthesis of polygonal Co3Sn2 nanostructure with enhanced magnetic properties. RSC Adv. 2016, 6, 39818–39822. [Google Scholar] [CrossRef]
- Kim, M.G.; Sim, S.; Cho, J. Novel Core-Shell Sn-Cu anodes for Lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv. Mater. 2010, 22, 5154–5158. [Google Scholar] [CrossRef]
- Yi, Z.; Tian, X.; Han, Q.; Cheng, Y.; Lian, J.; Wu, Y.; Wang, L. One-step synthesis of Ni3Sn2@reduced graphene oxide composite with enhanced electrochemical lithium storage properties. Electrochim. Acta 2016, 192, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Nobili, F.; Meschini, I.; Mancini, M.; Tossici, R.; Marassi, R.; Croce, F. High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: Lithium storage processes characterization and low-temperature behavior. Electrochim. Acta 2013, 107, 85–92. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, W.; Liu, X.; Yang, R.; Li, X. Synthesis and electrochemical performances of amorphous carbon-coated Sn–Sb particles as anode material for lithium-ion batteries. J. Solid State Chem. 2007, 180, 3360–3365. [Google Scholar] [CrossRef]
- Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Adv. Mater. 2007, 19, 2336–2340. [Google Scholar] [CrossRef]
- Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A Nanostructured Sn–C composite Lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.; Zhang, Y.; Li, R.; Cai, M.; Sun, X. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery. Appl. Surf. Sci. 2015, 332, 192–197. [Google Scholar] [CrossRef]
- Shen, Z.; Hu, Y.; Chen, Y.; Zhang, X.; Wang, K.; Chen, R. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J. Power Sources 2015, 278, 660–667. [Google Scholar] [CrossRef]
- Xia, X.; Wang, X.; Zhou, H.; Niu, X.; Xue, L.; Zhang, X.; Wei, Q. The effects of electrospinning parameters on coaxial Sn/C nanofibers: Morphology and lithium storage performance. Electrochim. Acta 2014, 121, 345–351. [Google Scholar] [CrossRef]
- Qin, J.; He, C.; Zhao, N.; Wang, Z.; Shi, C.; Liu, E.-Z.; Li, J. Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano 2014, 8, 1728–1738. [Google Scholar] [CrossRef]
- Li, N.; Song, H.; Cui, H.; Wang, C. Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 2014, 3, 102–112. [Google Scholar] [CrossRef]
- Liu, H.; Hu, R.; Sun, W.; Zeng, M.; Liu, J.; Yang, L.; Zhu, M. Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries. J. Power Sources 2013, 242, 114–121. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Zhu, Y.; Liu, Y.; Langrock, A.; Zachariah, M.R.; Wang, C. Uniform Nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Jarvin, M.; Inbanathan SS, R.; Rosaline, D.R.; Prabha, A.J.; Dhas, S.M.B. A study of the structural, morphological, and optical properties of shock treated SnO2 nanoparticles: Removal of Victoria blue dye. Heliyon 2022, 8, e09653. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, D.-W.; Yin, L.-C.; Li, N.; Li, F.; Cheng, H.-M. Oxygen Bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223. [Google Scholar] [CrossRef]
- Reddy, M.J.K.; Ryu, S.H.; Shanmugharaj, A.M. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: An efficient anode material for lithium ion batteries. Nanoscale 2016, 8, 471–482. [Google Scholar] [CrossRef]
- Zhou, X.; Dai, Z.; Liu, S.; Bao, J.; Guo, Y.-G. Ultra-uniform SnOx/Carbon nanohybrids toward advanced lithium-ion battery anodes. Adv. Mater. 2014, 26, 3943–3949. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saddique, J.; Shen, H.; Ge, J.; Huo, X.; Rahman, N.; Ahmadi, A.A.A.; Mushtaq, M. Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage. Molecules 2022, 27, 4083. https://doi.org/10.3390/molecules27134083
Saddique J, Shen H, Ge J, Huo X, Rahman N, Ahmadi AAA, Mushtaq M. Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage. Molecules. 2022; 27(13):4083. https://doi.org/10.3390/molecules27134083
Chicago/Turabian StyleSaddique, Jaffer, Honglie Shen, Jiawei Ge, Xiaomin Huo, Nasir Rahman, Ahmad Aziz Al Ahmadi, and Muhammad Mushtaq. 2022. "Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage" Molecules 27, no. 13: 4083. https://doi.org/10.3390/molecules27134083
APA StyleSaddique, J., Shen, H., Ge, J., Huo, X., Rahman, N., Ahmadi, A. A. A., & Mushtaq, M. (2022). Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage. Molecules, 27(13), 4083. https://doi.org/10.3390/molecules27134083