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Abstract: In this study, densified wood was prepared by hot pressing after partial lignin and hemicel-
lulose were removed through alkaline solution cooking. The tensile strength and elastic modulus of
densified wood were improved up to 398.5 MPa and 22.5 GPa as compared with the original wood,
and the characterization of its supramolecular structures showed that the crystal plane spacing of
the densified wood decreased, the crystallite size increased, and the maximum crystallinity (CI) of
cellulose increased by 15.05%; outstandingly, the content of O(6)H· · ·O(3′) intermolecular H-bonds
increased by approximately one-fold at most. It was found that the intermolecular H-bond content
was significantly positively correlated with the tensile strength and elastic modulus, and accordingly,
their Pearson correlation coefficients were 0.952 (p < 0.01) and 0.822 (p < 0.05), respectively. This work
provides a supramolecular explanation for the enhancement of tensile strength of densified wood.

Keywords: densified wood; strengthening mechanism; supramolecular structures; hydrogen bond;
tensile strength; crystallinity

1. Introduction

With environmental degradation and resource depletion, wood has attracted consider-
able attention from researchers due to its biodegradable, carbon-neutral, and inherently
sustainable properties. Researchers have recently utilized and modified the intrinsic hier-
archical structure of the wood to develop wood-based materials with specific properties,
such as transparency [1,2], thermal management [3,4], electrical conductivity [5,6], and
magnetism [7]. Most of these emerging applications reflected the lightweight and high-
strength characteristics of wood-based materials. Accordingly, in-depth knowledge of the
structure–strength relationship is the key to designing of wood-based materials with certain
mechanical properties.

The skeleton component of wood-based materials is cellulose. Cellulose has excellent
mechanical strength, such as cellulose nanofibrils with tensile strength up to 1.6 to 3.0 GPa [8]
and crystalline cellulose I with the axial elastic modulus up to 130 to 150 GPa [9,10]. Presently,
it is generally accepted that wood-based materials with higher cellulose content produce
higher mechanical strength [11]. Therefore, partial removal of the matrix, especially the lignin,
from wood allowed the preparation of high-strength, densified wood [2,12–17]. Specifically,
wood was treated with a delignification process derived from the classical pulp production
method while maintaining the aligned structure of wood fibers; subsequently, the delignified
wood was densified by hot pressing.

The arrangement and stacking state of the cellulose molecular chains, defined as the
supramolecular structures, is critical to the mechanical properties of densified wood. For
instance, Jakob et al. [18] found that the tensile strength and elastic modulus decreased
with the increasing tensile misalignment angle relative to fiber orientation and leveled off at
misalignment angles of ≥30◦. Khakalo et al. [15] used ionic liquids to convert the cellulose
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I of densified wood into cellulose II. They found that the tensile strength of densified wood
decreased with the polymorphic transformation and the decreasing crystallinity.

The hydrogen bond was considered as the critical force determining the mechanical
properties of cellulosic materials and densified wood [16,19–22]. Researchers have done
much work on the relationship between them by simulations. For cellulose-based paper,
Zhu et al. [20] showed that easier formation and reorganization of hydrogen bonds was
crucial to simultaneously improving the strength and toughness of cellulose nanopaper.
Meng et al. [23] developed a multi-scale crack bridging model. It suggested that bridg-
ing and hydrogen bonding between cellulose nanofibrils played an essential role in the
toughening of cellulose nanopaper. In densified wood, cellulose molecular chains were in a
highly aligned orientation, which amplified the enhancement of hydrogen bonding with
the collective synergistic effect of molecular interlocking [24]. Molecular simulations by
Song et al. [16] showed that hydrogen bonds could increase the sliding resistance between
two adjacent lignocellulosic fibers of densified wood about 10-fold. In addition, the re-
searchers have indirectly demonstrated the influence of hydrogen bonding on mechanical
properties of cellulose-based paper and densified wood through experiments [25,26]. In the
preparation of densified wood, Han et al. [26] investigated the effects of different drying
methods and moisture content of delignified wood on the mechanical properties of the
material and found a close relationship between them. There has been a lack of actual
experimental data on the relationship between the tensile strength and hydrogen bonds of
densified wood and cellulose-based materials.

In this work, densified wood with partially removed lignin and hemicellulose was pre-
pared. The variations of intermolecular hydrogen bond content, crystalline structure, and
crystallinity with cooking time were investigated. Based on the analysis of the supramolec-
ular structures of cellulose, especially the content of intermolecular H-bonds, and the
relationship between physical strength and the supramolecular structure, a molecular-level
explanation for the enhanced tensile strength of densified wood was provided.

2. Results and Discussion
2.1. Tensile Strength and Morphology of Densified Wood

To prepare densified wood, natural basswood (NW) was treated in boiled water or
boiled NaOH and Na2SO3 aqueous solutions at different times following a hot-pressing
process. There were two kinds of densified wood: densified wood treated with boiled water,
named DW-W1, and densified wood treated with boiled alkali solutions for 1 h, 2 h, 3 h, 4 h,
8 h, and 12 h, named DW-A1, DW-A2, DW-A3, DW-A4, DW-A8, and DW-A12, respectively.
As shown in Figures 1 and S1 and Table 1, the mechanical properties of densified wood
were significantly improved compared with NW. The tensile strength and elastic modulus
of DW-W1 increased to 168.9 MPa and 12.7 GPa, respectively. It was attributed to the
densification that increased the stress-transfer capacity within fiber substrates. The tensile
strength and elastic modulus of densified wood kept rising during the alkali cooking time
of 1–3 h, and the maximum reached 398.5 MPa and 22.5 GPa for DW-A3, as seen in Table 1.
They were a 4.8-fold increase in tensile strength and 2.8-fold in elastic modulus compared
to NW. This phenomenon was generally considered as an increase in the intermolecular
hydrogen bonding content due to the removal of lignin and hemicellulose [13,16]. With the
further extension of alkali cooking time, the tensile strength declined, while in comparison
with DW-A3, the tensile strength and elastic modulus for DW-A12 decreased by 102.3 MPa
and 6.8 GPa, respectively.

As shown in Figure 2, compared with log NW in Figure 2a,c,e, the densified DW-
A3 in Figure 2b,d,f had the following changes through alkali cooking and hot pressing.
Compared to NW, the thickness of DW-A3 showed a reduction of approximately four
times. Comparing Figure 2c,d, it can be seen that NW had many lumens with diameters
around 10–20 µm, while the cell lumens and cell walls of DW-A3 collapsed and formed a
tighter bond inside. Comparing Figure 2e,f, the gaps between fibers were diminished, the
boundary between fibers was blurred, and the surface was denser and smoother.



Molecules 2022, 27, 4167 3 of 10

Molecules 2022, 27, x FOR PEER REVIEW 3 of 10 
 

 

bond inside. Comparing Figure 2e,f, the gaps between fibers were diminished, the bound-

ary between fibers was blurred, and the surface was denser and smoother. 

 

Figure 1. Tensile strength and elastic modulus of NW and densified wood. 

 

Figure 2. Photographs of (a) NW and (b) DW-A3 (densified wood from 3 h alkali cooking), cross-

sections of (c) NW and (d) DW-A3, and longitudinal sections of (e) NW and (f) DW-A3. 

  

Figure 1. Tensile strength and elastic modulus of NW and densified wood.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 10 
 

 

bond inside. Comparing Figure 2e,f, the gaps between fibers were diminished, the bound-

ary between fibers was blurred, and the surface was denser and smoother. 

 

Figure 1. Tensile strength and elastic modulus of NW and densified wood. 

 

Figure 2. Photographs of (a) NW and (b) DW-A3 (densified wood from 3 h alkali cooking), cross-

sections of (c) NW and (d) DW-A3, and longitudinal sections of (e) NW and (f) DW-A3. 

  

Figure 2. Photographs of (a) NW and (b) DW-A3 (densified wood from 3 h alkali cooking), cross-
sections of (c) NW and (d) DW-A3, and longitudinal sections of (e) NW and (f) DW-A3.



Molecules 2022, 27, 4167 4 of 10

Table 1. Chemical components, density, and tensile properties of NW and densified wood.

Samples Lignin Content
(%)

Cellulose
Content (%)

Hemicellulose
Content (%)

Density
(g cm−3)

Tensile
Strength (MPa)

Elastic Modulus
(GPa)

NW 24.7 (0.4) 45.4 (0.5) 19.2 (0.3) 0.44(0.04) 68.4 (20.4) 5.9 (1.6)
DW-W1 24.7 (0.2) 45.3 (0.7) 19.5 (0.7) 1.06(0.05) 168.9 (22.6) 12.7 (2.1)
DW-A1 20.4 (0.1) 62.3 (1.2) 8.9 (1.2) 1.32(0.03) 294.3 (46.8) 13.7 (2.7)
DW-A2 20.2 (0.5) 64.7 (1.1) 9.3 (1.2) 1.31(0.00) 353.0 (25.0) 17.8 (2.5)
DW-A3 19.3 (0.6) 66.7 (0.9) 8.5 (0.9) 1.34(0.02) 398.5 (36.7) 22.5 (1.5)
DW-A4 18.4 (0.4) 68.7 (0.6) 9.7 (1.1) 1.33(0.02) 356.1 (31.2) 21.3 (2.0)
DW-A8 18.4 (0.7) 72.7 (0.8) 8.7 (0.5) 1.30(0.04) 334.7 (41.5) 17.1 (2.2)
DW-A12 19.0 (0.5) 74.3 (0.7) 8.0 (0.7) 1.26(0.02) 296.2 (39.3) 15.7 (1.2)

2.2. Content of Intermolecular H-Bonds

Taking the second derivative of the hydroxyl band from 3700 to 3000 cm−1 will improve
the resolution of various H-bonds. In the second derivative spectrum, 3580–3550 cm−1 is
assigned for free OH(2) and OH(6), 3455–3410 cm−1 is for O(2)H· · ·O(6) intramolecular H-
bonds, 3375–3340 cm−1 is for O(3)H· · ·O(5) intramolecular H-bonds, and 3310–3230 cm−1

is for O(6)H· · ·O(3′) intermolecular H-bonds. According to the peak positions of H-bonds
and free hydroxyl groups, the bands of 3700–3000 cm−1 were deconvoluted, as in Figure 3.
The relative contents of different hydrogen bonds and free hydroxyl groups were calculated
according to the percentage of the area they occupied. The calculated results are shown in
Table 2.
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Table 2. The relative content of three H-bonds and the free OH of NW and densified wood.

Samples O(6)H· · ·O(3′) O(3)H· · ·O(5) O(2)H· · ·O(6) Free OH(2) and OH(6) R2

NW 10.8 46.1 29.6 13.5 0.9988
DW-W1 13.5 45.4 26.5 14.6 0.9988
DW-A1 22.2 29.5 31.1 17.2 0.9976
DW-A2 22.8 26.0 34.6 16.6 0.9976
DW-A3 21.7 26.1 34.2 18.0 0.9979
DW-A4 22.3 27.4 35.8 14.5 0.9976
DW-A8 21.9 24.8 35.0 18.3 0.9979

DW-A12 19.0 31.4 35.4 14.2 0.9984

R2 is the coefficient of determination.

As shown in Table 2 and Figure 4a, the content of O(6)H· · ·O(3′) intermolecular H-
bonds of DW-W1 cooked in water increased by 24.8%, from 10.8% to 13.5% compared to NW.
Furthermore, the O(6)H· · ·O(3′) H-bond content of each densified wood treated with alkali
solutions was higher than DW-W1. This is because there is more lignin and hemicellulose
removal by boiled alkali solution, allowing more intermolecular H-bond formation between
the aligned fibers. Figure 4 illustrates the removal of lignin and hemicellulose and the
formation of intermolecular H-bonds in densified wood treated with alkali solutions.
O(6)H· · ·O(3′) H-bond content within alkali cooking time ranging from 1 to 8 h was
significantly higher than 12 h. The reduction of intermolecular H-bond content caused
by the longer alkali cooking might be due to the destruction of H-bonds by OH− in
alkali [27,28]. The maximum content of O(6)H· · ·O(3′) H-bond was observed in DW-A2,
which increased by 111% from 10.8% to 22.8% compared with NW.
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2.3. Crystal Structure and Crystallinity

As shown in Figure 5, the positions of the 11(_)0, 110, 200, and 004 lattice planes
remained almost consistent for all samples, which indicated that the cellulose polymorph
lattice shape did not change. Table 3 shows that the CI for DW-W1 increased by 5.02%
compared to NW, which was consistent with the rising crystallinities after hot pressing in
the literature [29,30]. It could be explained by co-crystallization [31]. The CI for densified
wood showed an overall trend of first increasing and then decreasing with the alkali
cooking time. It increased in the alkali cooking phase of 1–4 h, and compared with NW
and DW-W1, the CI of DW-A4 increased by 15.05% and 10.03%, respectively. The rise in
CI could be attributed to two factors. One was the increase of cellulose proportion with
the removal of amorphous lignin and hemicellulose. Another was the co-crystallization
of free cellulose chains adjacent to the crystalline region after lignin and hemicellulose
removal [32,33]. The CI of densified wood slightly decreased as cooking time over 4 h,
probably due to the peeling effect of alkali on cellulose crystal [34].
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Figure 5. XRD diffractograms of the natural wood and densified wood.

Table 3. Crystalline index, crystallite size, and interplanar spacing of natural wood and densified wood.

Sample CI (%) Crystallite Size (nm) a Interplanar Spacing (nm) b

NW 60.82 3.3 0.398
DW-W1 65.84 3.2 0.396
DW-A1 69.54 3.8 0.393
DW-A2 73.75 3.8 0.392
DW-A3 73.86 3.8 0.391
DW-A4 75.87 4.2 0.393
DW-A8 74.75 4.2 0.393

DW-A12 74.20 4.0 0.391
a The size perpendicular to 200 planes; b the interplanar spacing of 200 planes.

The value of interplanar spacing is related to the number of paracrystalline layers. It
had a minimum between 0.384 and 0.3866 nm for perfect cellulose microcrystals [35,36]. As
shown in Table 3, the interplanar spacing of all densified wood samples was smaller than
that of NW. In particular, the reduction in the interplanar spacing was more significant for
the alkali-cooked densified wood than the water-cooked one. It was consistent with the
literature [37] and associated with the more intense stacking of cellulose chains after the
partial removal of lignin and hemicellulose.

The crystallite size of DW-W1 was slightly reduced by 0.1 nm compared to NW. However,
it significantly increased for the densified wood treated with alkali. DW-A4 and DW-A8 had
the maximum crystallite size, both increasing by 0.9 nm compared to NW, which could be
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explained by co-crystallization. Compared with DW-A8, the crystallite size for DW-A12 was
slightly reduced by 0.2 nm. It might be caused by the peeling action of the alkali.

2.4. Correlation Analysis

Increasing the content of intermolecular H-bonds during cooking procedures resulted
in a considerable increase in tensile strength and elastic modulus, as shown in Figure 6.
The Pearson correlation coefficient between intermolecular H-bond content and tensile
strength as well as between intermolecular H-bond content and elastic modulus was
0.952 (p < 0.01) and 0.822 (p < 0.05), respectively. It supports the molecular simulation
results of Song et al. [16], which showed the pivotal contribution of intermolecular H-
bonds to the enhanced strength of densified wood. Furthermore, the Pearson correlation
coefficients between CI and tensile strength and between CI and elastic modulus were 0.945
(p < 0.01) and 0.904 (p < 0.01), respectively. The results illustrate the close relationships
between the supramolecular structures of cellulose and the tensile properties of densified
wood. Notably, some researchers considered that van der Waals forces also impacted the
mechanical properties of cellulose materials [22,38,39]. Therefore, the correlation between
tensile strength and density was also explored, and the Pearson correlation coefficient was
0.921 (p < 0.01), which was less than the 0.952 (p < 0.01) that was between tensile strength
and intermolecular H-bond content. It might be due to the fact that H-bonds played a
dominant role in the enhancing strength of densified wood, while van der Waals forces
played a subordinate role.
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3. Materials and Methods
3.1. Materials

Basswood, 30 × 30 × 1 mm; sodium hydroxide (AR, 96%); sodium sulfite (AR, 97%).

3.2. The Preparation of Densified Wood

As shown in Figure 7, natural basswood veneers were cooked in boiled water for 1 h
or boiled 2.5 M NaOH and 0.4 M Na2SO3 aqueous solutions (the liquid ratio was 20:1) for
1 h, 2 h, 3 h, 4 h, 8 h, and 12 h. Residual chemicals were removed with deionized water.
The treated wood samples in the water-saturated state were covered with polytetrafluo-
roethylene plates and pressed with a hydraulic press under pressure of 2.5 MPa at 100 ◦C
for 4 h to obtain densified wood.
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3.3. Chemical Composition Analysis

The chemical compositions of the samples were analyzed according to the NREL
protocol, including cellulose (glucan), hemicellulose (xylan, arabinose, galactan), and lignin
(Klason lignin and acid-soluble lignin) [40].

3.4. Scanning Electron Microscope (SEM) Analysis

The microstructure of samples was characterized by the SEM (Zeiss, Merlin, Germany)
with an acceleration voltage of 10 kV.

3.5. Mechanical Properties

The mechanical properties were carried out on an Instron 5565 universal tester (Boston,
MA, USA) using a 2 KN load cell. The dry specimens were balanced in a standard condi-
tioned room (23 ± 1 ◦C, 50 ± 2% RH) for 24 h before the test.

3.6. XRD Analysis

The crystalline structure was determined by a Shimadzu XRD 7000S (Shimadzu, Kyoto,
Japan) while using Cu-Ka radiation. The samples were scanned at 40 kV and 30 mA in
a 2θ range of 4–40◦ at 1◦ min−1. Before analysis, the experimental data were nine points
smoothed with Savitzky–Golay algorithm. The crystalline index (CI) values were obtained
from the peak intensity method. The CI was calculated as Equation (1) [41].

CI =
(I 200 − Im)

I200
× 100% (1)

where I200 is the maximum diffraction intensity value of the (200) lattice plane between
the scattering angles of 2θ = 22◦ and 23◦, and Iam is the minimum diffraction intensity of
amorphous fraction between 2θ = 18◦ and 19◦.

The crystallite size was calculated by the widely used Scherrer Equation (2) [42]:

L =
k × λ

(β × cos θ)
(2)

where L is the size that is perpendicular to the lattice plane, k is a constant that depends
on the crystal shape (0.89), λ is the wavelength of the incident beam in the diffraction
experiment (0.154 nm), β is the full width at half maximum of the diffraction peak, and θ is
the Bragg’s angle.

3.7. FT-IR Analysis

The FT-IR spectra were recorded on solid samples in KBr pellets by means of an FT-IR
Bruker Vertex 70 spectrometer (Karlsruhe, Germany). The spectra were recorded by averaging
64 recordings and at a resolution of 4 cm−1 with transmission mode from 4000 cm−1 to
400 cm−1. The results were made on the average spectra (seen in Figure S2) obtained from
three recordings. Nonlinear fitting of the FT-IR spectral region from 3000 cm−1 to 3700 cm−1

was carried out with the Gaussian function [42].
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4. Conclusions

In this work, densified wood with the enhanced strength was successfully prepared by
cooking with hot water and alkali followed by hot pressing, and the relationship between
the strength properties of densified wood and the supramolecular structures of cellulose
was discussed. From the experimental results, alkali solution removed lignin and hemicel-
lulose in wood fibers more efficiently than hot water, creating conditions for the formation
of hydrogen bonds between cellulose molecules and thus more significantly improving
the strength of densified wood. Finally, it was concluded that there was a significantly
positive correlation between the tensile strength of densified wood and the supramolecular
structures of cellulose, such as crystallinity and the intermolecular hydrogen bond content.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27134167/s1, Figure S1: stress-strain curve of NW and
densified wood with various cooking time; Figure S2: FT-IR of NW and densified wood.
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