Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review
Abstract
:1. Introduction
2. QuEChERS Applications to Pesticide-Residue Analysis in Soils
3. The Extraction Step
3.1. Modifications of the Sample Amount
3.2. Modifications of Water Addition during Extraction
3.3. Modifications of the Extraction-Solvent Type
3.4. Modifications of the Salting-Out Effect
4. The Clean-Up Step
4.1. The d-SPE Approach
4.2. Other Clean-Up Approaches
4.3. No-Clean-Up Approaches
5. Comparison of the QuEChERS Method with Other Extraction Methods
6. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meijer, S.N.; Ockenden, W.A.; Sweetman, A.; Breivik, K.; Grimalt, J.O.; Jones, K.C. Global distribution and budget of PCBs and HCB in background surface soils: Implications for sources and environmental processes. Environ. Sci. Technol. 2003, 37, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Von Lindern, I.; Spalinger, S.; Stifelman, M.L.; Stanek, L.W.; Bartrem, C. Estimating children’s soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill superfund site in Idaho. Environ. Health Perspect. 2016, 124, 1462–1470. [Google Scholar] [CrossRef] [Green Version]
- Varela-Martínez, D.A.; González-Sálamo, J.; González-Curbelo, M.Á.; Hernández-Borges, J. Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Extraction. In Gas Chromatography (Handbooks in Separation Science); Poole, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 399–437. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy Mmultiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Lehotay, S.J.; De Kok, A.; Hiemstra, M.; Van Bodegraven, P. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int. 2005, 88, 595–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehotay, S.J.; O’Neil, M.; Tully, J.; García, A.V.; Contreras, M.; Mol, H.; Heinke, V.; Anspach, T.; Lach, G.; Fussell, R.; et al. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standard Method EN 15662; Food of Plant Origin–Determination of Pesticide Residues using GC–MS and/or LC–MS/MS following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE-QuEChERS Method. European Committee for Standardization (CEN): Brussels, Belgium, 2008.
- Rajput, S.; Sharma, R.; Kumari, A.; Kaur, R.; Sharma, G.; Arora, S.; Kaur, R. Pesticide residues in various environmental and biological matrices: Distribution, extraction, and analytical procedures. Environ. Dev. Sustain. 2021, 24, 6032–6052. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Noorhisham, N.A.; Yahaya, N.; Mohamad, S.; Kamaruzzaman, S.; Osman, H.; Aboul-Enein, H. Sampling and sample preparation techniques for the analysis of organophosphorus pesticides in soil matrices. Crit. Rev. Anal. Chem. 2021, 1–22. [Google Scholar]
- Pszczolinska, K.; Michel, M. The QuEChERS approach for the determination of pesticide residues in soil samples: An overview. J. AOAC Int. 2016, 99, 1403–1414. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef]
- Tadeo, J.L.; Pérez, R.A.; Albero, B.; García-Valcárcel, A.I.; Sánchez-Brunete, C. Review of sample preparation techniques for the analysis of pesticide residues in soil. J. AOAC Int. 2012, 95, 1258–1271. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, C.; Gartner, M.; Mentler, A.; Fuerhacker, M. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry. Talanta 2008, 75, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Nawaz, S.; Barker, H.; Ahmad, I.; Ashraf, M. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 2933–2939. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.G.; Laespada, M.E.F.; Martín, S.H.; Ferreira, A.M.C.; Pavón, J.L.P.; Cordero, B.M. Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples. Talanta 2010, 81, 385–391. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L.; Li, X.; Jiang, Y.; Li, N.; Qin, Z.; Pan, C. Residue dynamic of pyrimorph on tomatoes, cucumbers and soil under greenhouse trails. Bull. Environ. Contam. Toxicol. 2011, 86, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Caldas, S.S.; Bolzan, C.M.; Cerqueira, M.B.; Tomasini, D.; Furlong, E.B.; Fagundes, C.; Primel, E.G. Evaluation of a modified QuEChERS extraction of multiple classes of pesticides from a rice paddy soil by LC-APCI-MS/MS. J. Agric. Food Chem. 2011, 59, 11918–11926. [Google Scholar] [CrossRef]
- Temur, C.; Tiryaki, O.; Uzun, O.; Basaran, M. Adaptation and validation of QuEChERS method for the analysis of trifluralin in wind-eroded soil. J. Environ. Sci. Health Part B 2012, 47, 842–850. [Google Scholar] [CrossRef]
- Rouvire, F.; Buleté, A.; Cren-Olivé, C.; Arnaudguilhem, C. Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta 2012, 93, 336–344. [Google Scholar] [CrossRef]
- Prestes, O.D.; Padilla-Sánchez, J.A.; Romero-González, R.; Grio, S.L.; Frenich, A.G.; Martínez-Vidal, J.L. Comparison of several extraction procedures for the determination of biopesticides in soil samples by ultrahigh pressure LC-MS/MS. J. Sep. Sci. 2012, 35, 861–868. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, P.; Zhang, F.; Du, F.; Pan, C. Diafenthiuron residue and decline in pakchoi and soil under field application. Ecotoxicol. Environ. Saf. 2012, 79, 75–79. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, H. Determination and study on residue and dissipation of benazolin-ethyl and quizalofop-p-ethyl in rape and soil. Int. J. Environ. Anal. Chem. 2013, 93, 679–691. [Google Scholar] [CrossRef]
- Fernandes, V.C.; Domingues, V.F.; Mateus, N.; Delerue-Matos, C. Multiresidue pesticides analysis in soils using modified QuEChERS with disposable pipette extraction and dispersive solid-phase extraction. J. Sep. Sci. 2013, 36, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.K.; Elie, F.; Jinang, C. Determination of 24 pesticides residues in mineral and peat soils by modified QuEChERS method and gas chromatography. Int. J. Environ. Anal. Chem. 2014, 94, 519–530. [Google Scholar] [CrossRef]
- De Oliveira Arias, J.L.; Rombaldi, C.; Caldas, S.S.; Primel, E.G. Alternative sorbents for the dispersive solid-phase extraction step in quick, easy, cheap, effective, rugged and safe method for extraction of pesticides from rice paddy soils with determination by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1360, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Homazava, N.; Gachet Aquillon, C.; Vermeirssen, E.; Werner, I. Simultaneous multi-residue pesticide analysis in soil samples with ultra-high-performance liquid chromatography–tandem mass spectrometry using QuEChERS and pressurised liquid extraction methods. Int. J. Environ. Anal. Chem. 2014, 94, 1085–1099. [Google Scholar] [CrossRef]
- De Carlo, R.M.; Rivoira, L.; Ciofi, L.; Ancillotti, C.; Checchini, L.; Del Bubba, M.; Bruzzoniti, M.C. Evaluation of different QuEChERS procedures for the recovery of selected drugs and herbicides from soil using LC coupled with UV and pulsed amperometry for their detection. Anal. Bioanal. Chem. 2015, 407, 1217–1229. [Google Scholar] [CrossRef]
- Di, S.; Shi, S.; Xu, P.; Diao, J.; Zhou, Z. Comparison of different extraction methods for analysis of 10 organochlorine pesticides: Application of MAE-SPE method in soil from Beijing. Bull. Environ. Contam. Toxicol. 2015, 95, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Kaczyński, P.; Łozowicka, B.; Jankowska, M.; Hrynko, I. Rapid determination of acid herbicides in soil by liquid chromatography with tandem mass spectrometric detection based on dispersive solid phase extraction. Talanta 2016, 152, 127–136. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; He, Z.; Wang, L.; Luo, M.; Peng, Y.; Zhou, Q. Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal. Methods 2016, 8, 2463–2470. [Google Scholar] [CrossRef]
- Pang, N.; Wang, T.; Cui, Y.; Hu, J. New dispersive solid phase extraction sorbent of graphitic carbon nitride for field evaluation and dissipation kinetics of pesticides in wheat ecosystem by liquid chromatography tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2016, 96, 1156–1169. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Tian, C.; Gui, W.; Guo, Y.; Zhu, G. Residue analysis of benzobicyclon in soil and sediment samples by ultra high-performance liquid chromatography tandem mass spectrometry. J. AOAC Int. 2016, 99, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Pang, N.; Wang, T.; Hu, J. Method validation and dissipation kinetics of four herbicides in maize and soil using QuEChERS sample preparation and liquid chromatography tandem mass spectrometry. Food Chem. 2016, 190, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, M.F.; Hussein, L.A.; El Azab, N.F. Multiresidue analysis of five neonicotinoid insecticides and their primary metabolite in cucumbers and soil using high-performance liquid chromatography with diode-array detection. J. AOAC Int. 2017, 100, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Rutkowska, E.; Jankowska, M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ. Sci. Pollut. Res. 2017, 24, 7124–7138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łozowicka, B.; Mojsak, P.; Kaczyński, P.; Konecki, R.; Borusiewicz, A. The fate of spirotetramat and dissipation metabolites in Apiaceae and Brassicaceae leaf-root and soil system under greenhouse conditions estimated by modified QuEChERS/LC–MS/MS. Sci. Total Environ. 2017, 603, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Shao, X.; Lin, H.; Hu, J. Dissipation, residues and risk assessment of metaldehyde and niclosamide ethanolamine in pakchoi after field application. Food Chem. 2017, 229, 604–609. [Google Scholar] [CrossRef]
- Gong, J.; Yang, G.; Yu, W.; Huang, M.; Li, F.; Jin, M.; Hu, D.; Zhang, K. The development and validation of a liquid chromatography–tandem mass spectrometry procedure for the determination of dioctyldiethylenetriamine acetate residues in soil, green and cured tobacco leaves using a modified QuEChERS approach. Chromatographia 2018, 81, 1035–1041. [Google Scholar]
- Xu, T.; Feng, X.; Pan, L.; Jing, J.; Zhang, H. Residue and risk assessment of fluopicolide and cyazofamid in grapes and soil using LC-MS/MS and modified QuEChERS. RSC Adv. 2018, 8, 35485–35495. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Li, D.; Guo, Y.; Shi, S.; Yan, F. Simultaneous determination of seven pesticide residues in soil samples using ultrasound-assisted dispersive solid-phase extraction combined with UHPLC-MS/MS. Sep. Sci. Plus 2018, 1, 296–305. [Google Scholar] [CrossRef]
- Song, S.; Chen, Z.; Wei, J.; Lei, Y.; Deng, C.; Tan, H.; Li, X. Determination of polyoxin b in cucumber and soil using liquid chromatography tandem mass spectrometry coupled with a modified quechers method. Acta Chromatogr. 2019, 31, 157–163. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Wang, L.; Shao, J.; Mei, W.; Wang, L. Development and application of a dispersive solid-phase extraction method for the simultaneous determination of chloroacetamide herbicide residues in soil by gas chromatography-tandem mass spectrometry (GC-MS/MS). Int. J. Environ. Anal. Chem. 2019, 99, 282–296. [Google Scholar] [CrossRef]
- Ðurović-Pejčev, R.D.; Bursić, V.P.; Zeremski, T.M. Comparison of QueChers with traditional sample preparation methods in the determination of multiclass pesticides in soil. J. AOAC Int. 2019, 102, 46–51. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y.; Liu, X.; Yang, Y.; Lu, P.; Hu, D. Ddevelopment and validation of a liquid chromatography–tandem mass spectrometry method for multiresidue determination of 25 herbicides in soil and tobacco. Chromatographia 2020, 83, 229–239. [Google Scholar] [CrossRef]
- Fang, N.; Lu, Z.; Zhang, Z.; Hou, Z.; Liang, S.; Wang, B.; Wang, S.; Lu, Z. Dissipation and residues of dimethyl disulfide in tomatoes and soil under greenhouse and open field conditions. J. Environ. Sci. Health Part B 2020, 55, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Li, S.; Li, Y.; Li, X.; Luo, Y. Simultaneous determination and exposure assessment of six common pesticides in greenhouses through modified QuEChERS and gas chromatography–mass spectrometry. Stoch. Environ. Res. Risk Assess. 2020, 34, 1967–1982. [Google Scholar] [CrossRef]
- Hubetska, T.S.; Kobylinska, N.G.; Menendez, J.R.G. Application of hydrophobic magnetic nanoparticles as cleanup adsorbents for pesticide residue analysis in fruit, vegetable, and various soil samples. J. Agric. Food Chem. 2020, 68, 13550–13561. [Google Scholar] [CrossRef]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.M.; Zumbado, M.; Henríquez-Hernández, L.A.; Macías-Montes, A.; Luzardo, O.P. Extension of an extraction method for the determination of 305 organic compounds in clay-loam soil to soils of different characteristics. MethodsX 2021, 8, 101476. [Google Scholar] [CrossRef]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.; Luzardo, O.P. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ. 2021, 753, 142015. [Google Scholar] [CrossRef]
- García Valverde, M.; Martínez Bueno, M.J.; Gómez-Ramos, M.M.; Aguilera, A.; Gil García, M.D.; Fernández-Alba, A.R. Determination study of contaminants of emerging concern at trace levels in agricultural soil. A pilot study. Sci. Total Environ. 2021, 782, 146759. [Google Scholar] [CrossRef]
- Luo, J.; Bian, C.; Rao, L.; Zhou, W.; Li, Y.; Li, B. Determination of the residue behavior of isocycloseram in Brassica oleracea and soil using the QuEChERS method coupled with HPLC. Food Chem. 2021, 367, 130734. [Google Scholar] [CrossRef]
- Do Amaral, B.; Peralta-Zamora, P.; Nagata, N. Simultaneous multi-residue pesticide analysis in southern Brazilian soil based on chemometric tools and QuEChERS-LC-DAD/FLD method. Environ. Sci. Pollut. Res. 2022, 29, 39102–39115. [Google Scholar] [CrossRef] [PubMed]
- Słowik-Borowiec, M.; Szpyrka, E.; Książek-Trela, P.; Podbielska, M. Simultaneous determination of multi-class pesticide residues and PAHs in plant material and soil samples using the optimized QuEChERS method and tandem mass Spectrometry Analysis. Molecules 2022, 27, 2140. [Google Scholar] [CrossRef]
- Lafay, F.; Daniele, G.; Fieu, M.; Pelosi, C.; Fritsch, C.; Vulliet, E. Ultrasound-assisted QuEChERS-based extraction using EDTA for determination of currently-used pesticides at trace levels in soil. Environ. Sci. Pollut. Res. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wu, Q.; Wu, X. Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Filed Conditions. Foods 2022, 11, 669. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, Y.; Zhang, S.; Wang, M.; Liang, X.; Zhang, Y.; Huang, S.; Zhang, C. Validation and application of a QuEChERS-based method for estimation of the half-lives of cyromazine and acetamiprid in cowpeas and soil by LC-ESI-MS/MS. Int. J. Environ. Anal. Chem. 2022, 102, 650–666. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Maštovská, K.; Lightfield, A.R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Socas-Rodríguez, B.; Hernández-Borges, J. Recent applications of nanomaterials in capillary electrophoresis. Electrophoresis 2017, 38, 2431–2446. [Google Scholar] [CrossRef]
- Correia-Sá, L.; Fernandes, V.C.; Carvalho, M.; Calhau, C.; Domingues, V.M.F.; Delerue-Matos, C. Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J. Sep. Sci. 2012, 35, 1521–15307. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Dionis-Delgado, S.; Asensio-Ramos, M.; Hernández-Borges, J. Pesticide analysis in toasted barley and chickpea flours. J. Sep. Sci. 2019, 35, 299–307. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrero, M.; Herrera-Herrera, A.V.; Hernández-Borges, J. Dissipation kinetics of organophosphorus pesticides in milled toasted maize and wheat flour (gofio) during storage. Food Chem. 2019, 229, 854–859. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M. Determination of pesticides and their metabolites in processed cereal samples. Food Addit. Contam. Part A 2012, 29, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: A review. Environ. Pollut. 2000, 108, 3–14. [Google Scholar] [CrossRef]
- Salama, G.; El Gindy, A.; Abdel Hameed, E.A. The use of experimental design for optimisation of QuEChERS extraction of commonly used pesticides in Egyptian soil and drainage water and their determination by GC/MS. Int. J. Environ. Anal. Chem. 2020, 1–12. [Google Scholar] [CrossRef]
- Sefiloglu, F.O.; Tezel, A.; Balcloǧlu, I.A. Validation of an Analytical Workflow for the Analysis of Pesticide and Emerging Organic Contaminant Residues in Paddy Soil and Rice. J. Agric. Food Chem. 2021, 69, 3298–3306. [Google Scholar] [CrossRef]
- Kwon, H.; Lehotay, S.J.; Geis-Asteggiante, L. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. J. Chromatogr. A 2012, 1270, 235–245. [Google Scholar] [CrossRef]
- Tsuchiyama, T.; Katsuhara, M.; Sugiura, J.; Nakajima, M.; Yamamoto, A. Combined use of a modifier gas generator, analyte protectants and multiple internal standards for effective and robust compensation of matrix effects in gas chromatographic analysis of pesticides. J. Chromatogr. A 2019, 1589, 122–133. [Google Scholar] [CrossRef]
- Słowik-Borowiec, M.; Szpyrka, E. Multiresidue Analysis of Pesticides in Wine and Grape Using Gas Chromatography with Microelectron Capture and Nitrogen–Phosphorus Detection. Food Anal. Methods 2018, 11, 3516–3530. [Google Scholar] [CrossRef]
- Cabrera, L.D.C.; Caldas, S.S.; Prestes, O.D.; Primel, E.G.; Zanella, R. Evaluation of alternative sorbents for dispersive solid-phase extraction clean-up in the QuEChERS method for the determination of pesticide residues in rice by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1945–1954. [Google Scholar] [CrossRef]
- Rajski, R.; Lozano, A.; Uclés, A.; Ferrer, C.; Fernández-Alba, A.R. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2013, 1304, 109–120. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Lehotay, S.J. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2013, 758, 80–92. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Lee, M.H.; Lee, G.H. Rapid determination of 95 pesticides in soybean oil using liquid-liquid extraction followed by centrifugation, freezing and dispersive solid phase extraction as cleanup steps and gas chromatography with mass spectrometric detection. Microchem. J. 2010, 95, 113–119. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Lehotay, S.J.; Mastovska, K.; Dorweiler, K.J.; Leepipatpiboon, N. Extension of the QuEChERS method for pesticide residues in cereals to flaxseeds, peanuts, and doughs. J. Agric. Food Chem. 2010, 58, 5950–5958. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Lehotay, S.J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1358, 75–84. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y.; Lehotay, S.J. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp. Anal. Chim. Acta 2014, 827, 40–46. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Han, L.; Sapozhnikova, Y. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography-tandem mass spectrometry. Chromatographia 2016, 79, 1113–1130. [Google Scholar] [CrossRef] [Green Version]
- Lehotay, S.J. The QuEChERSER Mega Method. LCGC N. Am. 2022, 40, 13–19. [Google Scholar]
- Lehotay, S.J.; Michlig, N.; Lightfield, A.R. Assessment of test portion sizes after sample comminution with liquid nitrogen in an improved high-throughput method for analysis of pesticide residues in fruits and vegetables. J. Agric. Food Chem. 2020, 68, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.H.; Lehotay, S.J.; Sapozhnikova, Y.; Ninga, E.; Lightfield, A.R. High-throughput mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants by ultra-high-performance liquid chromatography−tandem mass spectrometry and robotic mini-solid-phase extraction cleanup + low-pressure gas chromatography−tandem mass spectrometry, Part 1: Beef. J. Agric. Food Chem. 2021, 69, 1159–1168. [Google Scholar] [PubMed]
- Ninga, E.; Sapozhnikova, Y.; Lehotay, S.J.; Lightfield, A.R.; Monteiro, S.H. High-throughput mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants by ultra-high-performance liquid chromatography–tandem mass spectrometry and robotic mini-solid-phase extraction cleanup + low-pressure gas chromatography–tandem mass spectrometry, Part 2: Catfish. J. Agric. Food Chem. 2021, 69, 1169–1174. [Google Scholar]
- Monteiro, S.H.; Lehotay, S.J.; Sapozhnikova, Y.; Ninga, E.; Moura Andrade, G.C.R.; Lightfield, A.R. Validation of the QuEChERSER mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants in tilapia (Oreochromis Niloticus). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 699–709. [Google Scholar] [CrossRef]
- Michlig, N.; Lehotay, S.J.; Lightfield, A.R.; Beldoménico, H.; Repetti, M.R. Validation of a high-throughput method for analysis of pesticide residues in hemp and hemp products. J. Chromatogr. A 2021, 1645, 462097. [Google Scholar] [CrossRef] [PubMed]
Pesticides | Sample Amount | Water Added | Extraction | Sorbents in the dSPE Step per mL of Extract | Analytical Technique | Recoveries | LOQs | Comments | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
Solvents | Salts | |||||||||
24 multiclass pesticides | 10 g | - | 20 mL ACN | 4 g MgSO4, 1 g NaCl, 1 g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 150 mg MgSO4 and 25 mg PSA | HPLC-MS/MS and GC-MS | 27–121% | 0.3–125 µg/kg | The QuEChERS method showed better performance than USE, the European Norm DIN 12393 and PLE | [14] |
19 OCPs | 5 g | 10 mL | 10 mL ACN (1% HAc) | 4 g MgSO4 and 1.7 g NaOAc | - | GC-MS/MS | 70–100% | 0.1–1.6 µg/kg | The clean-up step was performed by liquid-liquid partitioning with n-hexane | [15] |
Chloroform, 1,2-dichlorobenze and HCB | 2.5 g | 1.5 mL | 10 mL EtOAc | 4 g MgSO4 | - | GC-µECD | 62–93% | 0.4–7.2 µg/kg | EtOAc showed higher extraction efficiency than ACN | [16] |
Pyrimorphos | 15 g | 9 mL | 15 mL ACN | 6 g MgSO4 and 1.5 g NaOAc | 150 mg MgSO4 and 50 mg PSA | HPLC-DAD | 86–96% | 50 µg/kg | The clean-up step of the extract was optimized by vortex | [17] |
Clomazone, fipronil, tebuconazole, propiconazole and azoxystrobin | 10 g | - | 10 mL ACN (1% HAc) | 4 g MgSO4 and 1 g NaCl | - | HPLC-MS/MS | 70–118% | 10–50 µg/kg | PSA, C18 and MgSO4 in the d-SPE step did not improve recoveries | [18] |
Trifluralin | 10 g | - | 20 mL ACN | 4 g MgSO4, 1 g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 150 mg MgSO4 and 25 mg PSA | GC-ECD | 87–93% | 11 µg/kg | Clean-up and preconcentration steps to change the injection solvent from ACN to EtOAc were incorporated | [19] |
34 OCPs | 2 g | - | 15 mL DCM | 4 g MgSO4, 1g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | - | GC-MS | 60–100% for almost all pesticides | 58–2708 µg/kg | The QuEChERS method showed better performance than ASE. DCM showed higher extraction efficiency than ACN | [20] |
Nicotine, sabadine, veratridine, rotenone, azadirachtin, cevadine, deguelin, spynosad D, pyrethrins and piperonyl butoxide | 5 g | 2.5 mL | 5 mL ACN (1% HAc) | 4 g MgSO4, 4 g NaCl, 1g sodium citrate dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | - | UHPLC-MS/MS | 70–120% for almost all pesticides | 4–10 µg/kg | The QuEChERS method showed better performance than SLE, SLE-USE and PLE | [21] |
Diafenthiuron | 10 g | 2 mL | 10 mL ACN | 4 g MgSO4 and 1 g NaCl | 150 mg MgSO4 and 50 mg PSA | HPLC-MS | 74–100% | 1 µg/kg | USE improved extraction efficiency | [22] |
Benazolin-ethyl and quizalofop-p-ethyl | 10 g | 5 mL | 10 mL ACN | 3 g NaCl | 200 mg PSA and 50 mg C18 | HPLC-MS/MS | 74–110% | 5 µg/kg | GCB gave lower recoveries for quizalofop-p-ethyl and benazolin-ethyl | [23] |
36 multiclass pesticides | 10 g | 3 mL | 10 mL ACN | 4 g MgSO4, 1 g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | d-SPE: 150 mg MgSO4, 150 mg PSA and 50 mg C18; DPX: 150 mg MgSO4, 50 mg PSA and 50 mg | GC-MS/MS | 70–120% for almost all pesticides | 10 µg/kg | There was no significant difference between d-SPE and DPX in term of recoveries | [24] |
10 OPPs, 8 OCPs and 6 PYPs | 10 g | 15 mL ACN (1% HAc) | 6 g MgSO4 and 1.5 g NaCl | - | GC-FPD and GC-ECD | 80–120% | 2–5 µg/kg | 0.2 g PSA for OPPs and 0.2 g silica gel format for OCPs and PYPs, both in DPX format using Pasteur pipettes | [25] | |
17 multiclass pesticides | 10 g | - | 10 mL ACN (1% HAc) | 4 g MgSO4 and 1 g NaCl | 75 mg MgSO4 and 25 mg chitosan | HPLC-MS/MS | 70–120% for almost all pesticides | 0.1–100 µg/kg | Chitosan was more efficient than PSA, Chitin, and diatomaceous earth for clean-up purposes | [26] |
25 multiclass pesticides | 5 g | 5 mL | 10 mL ACN | 4 g MgSO4, 1g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 180 mg MgSO4, 30 mg PSA and 30 mg C18 | UHPLC-MS/MS | 74–111% for almost all pesticides | 0.2–2.5 µg/kg | The QuEChERS method showed better performance than PLE | [27] |
Bentazone, atrazine, carbamazepine, phenytoin, and its metabolites 5-(p-hydroxyphenyl-) and 5-phenylhydantoin | 5 g | - | 10 mL ACN: H2O (70:30, v/v) (5% HAc) | 4 g MgSO4 and 1 g NaCl | 12.5 mg MgSO4 and 6.25 mg C18 | HPLC-UV | 83–113% | 10 µg/kg | C18 showed higher clean-up performance than PSA | [28] |
10 OCPs | 5 g | 3 mL | 7 mL ACN | 6 g MgSO4, 1.5 g NaCl, 1.5 g sodium citrate tribasic dihydrate and 0.75 g sodium citrate dibasic sesquihydrate | - | GC-ECD and GC-MS/MS | 57–124% | 1–3.6 µg/kg | The QuEChERS and MAE methods showed better performance than ASE and USE, but QuEChERS yielded slightly higher RSD values compared to MAE. Florisil in SPE format showed better clean-up efficiency than a mix of MgSO4, PSA and C18 in d-SPE format | [29] |
26 multiclass pesticides | 5 g | 10 mL | 10 mL ACN (1% HAc) | 4 g MgSO4, 1 g NaCl, 1 g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 100 mg acidic alumina | UHPLC-MS/MS | 70–114% | 1 µg/kg | Acidic alumina showed better performance compared to 14 combinations of sorbents including PSA, GCB, C18, Florisil, silica gel, Z-SEP, and Z-SEP+ | [30] |
58 multiclass pesticides | 5 g | 10 mL | 10 mL ACN (1% HAc) | 4 g MgSO4 and 1 g NaOAc | 150 mg MgSO4, 25 mg PSA and 25 mg C18 | GC-MS/MS | 69–119% | 0.1–5 µg/kg | The AOAC QuEChERS version showed better performance than the EN QuEChERS version | [31] |
Florasulam, carfentrazone-ethyl, fluroxypyr-meptyl and fluroxypyr | 5 g | 2 mL | 10 mL ACN (1% HAc) | 2 g MgSO4 and 1 g NaCl | 10 mg GCN | HPLC-MS/MS | 80–110% | 2.4–6 µg/kg | GCN showed higher clean-up performance than C18 | [32] |
Benzobicyclon | 20 g | 20 mL | 40 mL ACN (1% FA) | 8 g MgSO4 and 2 g NaCl | - | UPLC-MS/MS | 64–76% | 0.3–2.2 µg/kg | ACN showed higher extraction efficiency than EtOAc. HLB showed higher clean-up performance than C18 in SPE format | [33] |
Furon, mesotrione, fluroxypyr-mepty and fluroxypyr | 5 g | 2 mL | 10 mL ACN (1% HAc) | 2 g MgSO4 and 1 g NaCl | 200 mg MgSO4 and 25 mg C18 | 1HPLC-MS/MS | 80–110% | 2.4–6 µg/kg | GCB and PSA were not necessary because the soil had no pigments | [34] |
Acetamiprid, imidacloprid, nitenpyram, flonicamid thiacloprid and 6-chloronicotinic acid | 10 g | - | 25 mL ACN: DCM (1:2, v/v) | 5 g NaCl | 400 mg C18 for the upper supernatant layer | HPLC-DAD | 65–100% | 48–246 µg/kg | ACN: DCM (1:2, v/v) showed higher extraction efficiency than ACN, acetone, EtOAc and ACN: DCM (2:1, v/v). C18 showed higher clean-up performance than PSA | [35] |
216 multiclass pesticides | 5 g | 10 mL | 10 mL ACN (1% FA) | 4 g MgSO4, 1 g NaCl, 1 g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | - | GC-MS/MS and GC-μECD/NPD | 71–120% | 5–10 µg/kg | A clean-up step with different combinations of MgSO4, PSA, C18 and GCB gave lower recoveries | [36] |
Spirotetramat and its four metabolites (β-enol, β-keto, β-mono and β-glu) | 5 g | - | 10 mL ACN (1% FA) | 4 g MgSO4 and 1 g NaCl | 33 mg Florisil | HPLC-MS/MS | 76–94% | 1 µg/kg | Florisil showed higher clean-up efficiency than neutral alumina, GCB, PSA, C18, diatomaceous earth, VERDE, ChloroFiltr and Chitosan | [37] |
Metaldehyde and niclosamide ethanolamine | 5 g | - | 10 mL ACN | 4 g MgSO4 and 1 g NaCl | 150 mg MgSO4 and 50 mg Florisil | HPLC-MS/MS | 90–101% | 10–200 µg/kg | ACN showed higher extraction efficiency than DCM and EtOAc. Florisil showed higher clean-up efficiency than PSA, GCB, and MWCNTs | [38] |
Dioctyl diethylenetriamine acetate | 10 g | 5 mL | 20 mL ACN | 2→5 g MgSO4 and 5 g NaCl | - | HPLC-MS/MS | 86–97% | 10 µg/kg | ACN: H2O (4:1, v/v) showed higher extraction efficiency than MeOH: H2O (4:1, v/v) | [39] |
Fluopicolide, cyazofamid and their metabolites (M-01, M-02 and 4-chloro-5-p-tolylimidazole-2-carbonitrile) | 10 g | 10 mL | ACN 10 mL (2.5% FA) | 6 g NaCl | 100 mg MgSO4 | HPLC-MS/MS | 71–107% | 50 µg/kg | ACN (2.5% FA) showed higher extraction efficiency than ACN | [40] |
Hexaconazole, flutriafol, triadimenol, tebuconazole, diniconazole, fipronil and picoxys-trobin | 5 g | - | 20 mL ACN | - | 60 mg MgSO4, 10 mg PSA, 10 mg C18 and 40 mg GCB | UHPLC-MS/MS | 69–106% | 0.03–0.25 µg/kg | USE for 20 min improved the extraction efficiency | [41] |
Polyoxin B | 5 g | - | 5 mL H2O (1% FA) | - | 13 mg C18 | HPLC-MS/MS | 83–112% | 3 µg/kg | H2O (1% FA) showed higher extraction efficiency than H2O: MeOH (1:1), H2O and H2O (1% NH3) | [42] |
Acetochlor, alachlor, metolachlor, metazachlor, butachlor and pretilachlor | 5 g | 10 mL | 3→10 mL ACN | 4 g NaCl | 50 mg MgSO4, 25 mg PSA, 25 mg C18 and 5 mg GCB | GC-MS/MS | 87–108% | 0.8–2.2 µg/kg | There was no significant difference between ACN and ACN (1% disodium hydrogen citrate sesquihydrate) in terms of recoveries | [43] |
12 multiclass pesticides | 10 g | 20 mL | 10 mL ACN | 4 g MgSO4, 1 g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 130 mg MgSO4, 21 mg PSA and 21 mg C18 | GC-MS | 54–103% | 6–21 µg/kg | The QuEChERS method showed better performance than SLE and Soxhlet extraction | [44] |
25 multiclass pesticides | 5 g | - | 20 mL ACN | 2 g NaCl | 50 mg C18 | HPLC-MS/MS | 72–108% | 80–400 µg/kg | ACN showed higher extraction efficiency than MeOH and DCM. C18 showed higher clean-up efficiency than PSA and GCB | [45] |
Dimethyl disulfide | 10 g | 5 mL | 15 mL MeOH | - | - | GC-MS | 85–98% | 1 µg/kg | A simplified QuEChERS method without extraction salts showed better performance than the original QuEChERS extraction | [46] |
Bifenthrin, chlorfenapyr, λ-cyhalothrin, pyridaben, pyrimethanil, and pyriproxyfen | 5 g | - | 10 mL ACN (1% HAc) | - | - | GC-MS | 86–100% | 0.5–2.4 µg/kg | Florisil showed higher clean-up efficiency than a mix of MgSO4, PSA and GCB both in SPE format. | [47] |
16 OCPs | 5 g | 8 mL | 8 mL ACN | 4 g MgSO4 and 1 g NaCl | 25 mg Fe3O4@Triton | GC-MS | 65–103% | 0.3–5.5 µg/kg | Fe3O4@Triton showed higher clean-up efficiency than C18, GCB and Fe3O4 in avocado and strawberry, and later this was then validated in soil | [48] |
225 multiclass pesticides | 10 g | - | 10 mL ACN (2.5% FA) | 6 g MgSO4 and 1.5 g NaOAc | - | UHPLC-MS/MS and GC-MS/MS | 70–120 for more than 87% pesticides | 1–5 µg/kg | - | [49] |
218 multiclass pesticides | 10 g | - | 10 mL ACN (2.5% FA) | 6 g MgSO4 and 1.5 g NaOAc | - | UHPLC-MS/MS and GC-MS/MS | 70–120% | 5–20 µg/kg | The AOAC QuEChERS method showed better performance than the EN QuEChERS version. PSA, C18, GCB or EMR- lipid in d-SPE did not improve recoveries | [50] |
13 multiclass pesticides | 10 g | 5 mL | 10 mL ACN (0.5% FA) | 4 g MgSO4, 1 g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 150 mg MgSO4 and 25 mg C18 | HPLC-MS/MS | 70–93% | 0.05 µg/kg | The QuEChERS method showed better performance than ultrasonic cylindrical probe and PLE. ACN (0.5% FA) showed higher extraction efficiency than MeOH. PSA did not improve recoveries | [51] |
Isocycloseram | 5 g | 5 mL | 10 mL ACN | 1 g MgSO4 and 0.5 g NaCl | - | HPLC-UV | 91–109% | 7.3–24 µg/kg | ACN showed higher extraction efficiency than DCM, MeOH, EtOAc and petroleum eter | [52] |
Atrazine, desethylatrazin, desisopropylatrazine, carbaryl, carbendazim and diuron | 1 g | 4 mL | 2 mL ACN | 1 g MgSO4 and 0.5 g NaCl | 66 mg MgSO4 and 16 mg PSA | HPLC-DAD/FLD | 74–108% | 5–15 µg/kg | PSA showed higher d-SPE efficiency than Florisil | [53] |
94 multiclass pesticides | 5 g | 10 mL | 10 mL acetone:n-hexano (1:4, v/v) | 4 g MgSO4, 1 g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 180 mg MgSO4 and 30 mg PSA | GC-MS/MS | 70–117% | 5–14 µg/kg | Acetone:n-hexane (1:4, v/v) showed higher extraction efficiency than ACN | [54] |
31 multiclass pesticides | 2.5 g | 6 mL (EDTA 0.1 M) | 5 mL ACN | 4 g MgSO4, 1 g NaCl, 1g sodium citrate tribasic dihydrate and 0.5 g sodium citrate dibasic sesquihydrate | 150 mg MgSO4, 25 mg C18 and 25 mg PSA | UPLC MS/MS | 55–118% | 0.01–5.5 µg/kg | The QuEChERS method showed better performance than PLE | [55] |
Pyraclostrobin | 5 g | 10 mL ACN | - | 150 mg MgSO4 and 50 mg PSA | HPLC-MS/MS | 97–102% | 0.2 µg/kg | ACN showed higher extraction efficiency than ACN (1% HAc), ACN (0.1% HAc), ACN (1% FA), ACN (0.1% FA) and ACN (1% NH3). PSA showed higher clean-up efficiency than C18, Florisil, PSA+C18 and GCB | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules 2022, 27, 4323. https://doi.org/10.3390/molecules27134323
González-Curbelo MÁ, Varela-Martínez DA, Riaño-Herrera DA. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules. 2022; 27(13):4323. https://doi.org/10.3390/molecules27134323
Chicago/Turabian StyleGonzález-Curbelo, Miguel Ángel, Diana Angélica Varela-Martínez, and Diego Alejandro Riaño-Herrera. 2022. "Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review" Molecules 27, no. 13: 4323. https://doi.org/10.3390/molecules27134323
APA StyleGonzález-Curbelo, M. Á., Varela-Martínez, D. A., & Riaño-Herrera, D. A. (2022). Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules, 27(13), 4323. https://doi.org/10.3390/molecules27134323