Sorption of Bisphenol A as Model for Sorption Ability of Organoclays
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Characterization of BPA-Clays and BPA-Organoclays
3.1.1. X-ray Powder Diffraction
3.1.2. Infrared Spectroscopy
3.1.3. Scanning Electron Microscopy and Energy Dispersive Analysis of X-ray
3.2. Comparison of the Results with Those Obtained from Similar Previously Conducted Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Yusop, Z. A review on bisphenol a occurrences, health effects and treatment process via membrane technology for drinking water. Environ. Sci. Pollut. Res. Int. 2016, 23, 1159–1567. [Google Scholar] [CrossRef] [PubMed]
- Erler, C.; Novak, J. Bisphenol a Exposure: Human Risk and Health Policy. J. Pediatric Nurs. 2010, 25, 400407. [Google Scholar] [CrossRef]
- Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manag. 2012, 104, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. J. Am. Med. Assoc. 2008, 300, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Mishra, I.M.; Kumar, V. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2−) oxidation systems. J. Environ. Manag. 2015, 156, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, S.; Kabay, N.; Yüksel, M. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J. Hazard. Mater. 2013, 263, 307–310. [Google Scholar] [CrossRef]
- Bakr, A.R.; Rahaman, M.S. Removal of bisphenol A by electrochemical carbon-nanotube filter: Influential factors and degradation pathway. Chemosphere 2017, 185, 879–887. [Google Scholar] [CrossRef]
- Park, Y.; Sun, Z.; Ayoko, G.A.; Frost, R.L. Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water. Chemosphere 2014, 107, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, L.; Zhu, Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir ACS J. Surf. Colloids 2012, 28, 8418–8425. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, Z.; Park, Y.; Ayoko, G.A.; Frost, R.L. Removal of bisphenol A from wastewater by Ca-montmorillonite modified with selected surfactants. Chem. Eng. J. Biochem. Eng. J. 2013, 234, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Garikoé, I.; Sorgho, B.; Yaméogo, A.; Guel, B.; Andala, D. Removal of bisphenol A by adsorption on organically modified clays from Burkina Faso. Bioremediation J. 2021, 25, 22–47. [Google Scholar] [CrossRef]
- Cao, F.; Bai, P.; Li, H.; Ma, Y.; Deng, X.; Zhao, C. Preparation of polyethersulfone-organophilic montmoril- lonite hybrid particles for the removal of bisphenol A. J. Hazard. Mater. 2009, 162, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, S.I.; Xi, Y.; Frost, R.L.; Ayoko, G.A. Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A. J. Colloid Interface Sci. 2016, 470, 183–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, A.; Anastopoulos, I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere 2017, 168, 885–902. [Google Scholar] [CrossRef]
- Wang, Z.M.; Ooga, H.; Hirotsu, T.; Wang, W.L.; Wu, Q.Y.; Hu, H.Y. Matrix-enhanced adsorption removal of trace BPA by controlling the interlayer hydrophobic environment of montmorillonite. Appl. Clay Sci. 2015, 104, 81–87. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, M.; Luo, Z.; Yang, S. Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain. Chem. Eng. J. Biochem. Eng. J. 2016, 285, 27–38. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, D.; Chen, X.; Lin, Y. Adsorption of bisphenol A from water by surfactant-modified zeolite. J. Colloid Interface Sci. 2010, 348, 585–590. [Google Scholar] [CrossRef]
- Kosky, P.G.; Silva, J.M.; Guggenheim, E.A. The aqueous phase in the interfacial synthesis of polycarbonates. Part 1. Ionic equilibria and experimental solubilities in the BPA-sodium hydroxide-water system. Ind. Eng. Chem. Res. 1991, 30, 462–467. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Wu, T.; Sun, D.; Li, Y. Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 118–129. [Google Scholar] [CrossRef]
- Ghavami, M.; Zhao, Q.; Javadi, S.; Jangam, J.S.D.; Jasinski, J.B.; Saraei, N. Change of organobentonite interlayer microstructure induced by sorption of aromatic and petroleum hydrocarbons-A combined study of laboratory characterization and molecular dynamics simulations. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 324–334. [Google Scholar] [CrossRef]
- Zampori, L.; Stampino, P.G.; Dotelli, G.; Botta, D.; Sora, I.N.; Settic, M. Interlayer expansion of dimethyl ditallowylammonium montmorillonite as a function of 2-chloroaniline adsorption. Appl. Clay Sci. 2008, 41, 149–157. [Google Scholar] [CrossRef]
- Chaara, D.; Bruna, F.; Ulibarri, M.A.; Draoui, K.; Barriga, C.; Pavlovic, I. Organo/layered double hydroxide nanohybrids used to remove nonionic pesticides. J. Hazard. Mater. 2011, 196, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, P.; Zhu, Y.; Tran, L. Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere 2016, 144, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Caglar, B.; Topcu, C.; Coldur, F.; Sarp, G.; Caglar, S.; Tabak, A.; Sahin, E. Structural, thermal, morphological and surface charge properties of dodecyltrimethylammonium-smectite composites. J. Mol. Struct. 2016, 1105, 70–79. [Google Scholar] [CrossRef]
- Garikoé, I.; Sorgho, B.; Guel, B.; Persson, I. Solid-state synthesis and physico-chemical characterization of modified smectites using natural clays from BURKINA FASO. Bull. Chem. Soc. Ethiop. 2021, 35, 43–59. [Google Scholar] [CrossRef]
- Stålhandske, C.M.V.; Persson, I.; Sandström, M.; Kamienska-Piotrowicz, E. Structure of the solvated Zinc (II), Cadmium (II), and Mercury (II) ions in N, N-dimethylthioformamide solution. Inorg. Chem. 1997, 36, 3174–3182. [Google Scholar] [CrossRef]
- Errais, E.; Duplay, J.; Darragi, F.; M’Rabet, I.; Aubert, A.; Huber, F.; Morvan, G. Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination 2011, 275, 74–81. [Google Scholar] [CrossRef]
- Styszko, K.; Nosek, K.; Motak, M.; Bester, K. Preliminary selection of clay minerals for the removal of pharmaceuticals, bisphenol A and triclosan in acidic and neutral aqueous solutions. Comptes. Rendus. Chim. 2015, 18, 1134–1142. [Google Scholar] [CrossRef]
- Alkaram, U.F.; Mukhlis, A.A.; Al-Dujaili, A.H. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J. Hazard. Mater. 2009, 169, 324–332. [Google Scholar] [CrossRef]
- Li, F.B.; Li, X.Z.; Li, X.M.; Liu, T.X.; Dong, J. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution. J. Colloid Interface Sci. 2007, 311, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.; Erjavec, B.; Dražić, G.; Grdadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B Environ. 2016, 181, 465–474. [Google Scholar] [CrossRef]
- Lagaly, G.; Ogawa, M.; Dékány, I. Handbook of Clay Science, Chap 7.3: Clay Mineral Organic Interactions, 1st ed.; Elsevier: Amsterdam, The Netherland, 2006; Volume 1, pp. 309–330. [Google Scholar]
- Kamitori, S.; Sumimoto, Y.; Vongbupnimit, K.; Noguchi, K.; Okuyama, K. Molecular and Crystal Structures of dodecyltrimethylammonium Bromide and its Complex with p-Phenylphenol. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1997, 300, 31–43. [Google Scholar] [CrossRef]
- Elgubbi, H.M.; Othman, S.S.; Harun, F.W. Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization. Int. J. Eng. Technol. 2020, 9, 850–856. [Google Scholar] [CrossRef]
- Churaev, N.V.; Sergeeva, I.P.; Sobolev, V.D.; Jacobasch, H. Modification of quartz surfaces using cationic surfactant solutions. Colloids Surf. A Physicochem. Eng. 2000, 164, 121–129. [Google Scholar] [CrossRef]
- Ding, C.; Shang, C. Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxide-coated sand. Water Res. 2010, 44, 3651–3658. [Google Scholar] [CrossRef]
- Polunina, I.A.; Isirikyan, A.A.; Polounine, K.E.; Mikhailova, S.S. Water influence on the surfactant adsorption on TiO2. Colloids Surf. A Physicochem. Eng. 1999, 160, 141–146. [Google Scholar] [CrossRef]
- Vidal, N.C.; Volzone, C. Analysis of tetramethylammonium-montmorillonite and retention of toluene from aqueous solution. Appl. Clay Sci. 2009, 45, 227–231. [Google Scholar] [CrossRef]
- Fei, B.; Chen, C.; Peng, S.; Zhao, X.; Wang, X.; Dong, L. FTIR study of poly (propylene carbonate)/ bisphenol A blends. Polym. Int. 2004, 53, 2092–2098. [Google Scholar] [CrossRef]
- Ullah, R.; Ahmad, I.; Zheng, Y. Fourier Transform Infrared Spectroscopy of (Bisphenol A). J. Spectrosc. 2016, 2016, 2073613. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Madejová, J.; Bujdák, J.; Janek, M.; Komade, P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 1397–1406. [Google Scholar] [CrossRef]
- Madejová, J.; Komadel, P.; Číčel, B. Infrared study of octahedral populations in smectites. Clay Miner. 1994, 29, 319–326. [Google Scholar] [CrossRef]
- Marras, S.I.; Tsimpliaraki, A.; Zuburtikudis, I.; Panayiotou, C. Thermal and colloidal behavior of amine-treated clays: The role of amphiphilic organic cation concentration. J. Colloid Interface Sci. 2007, 315, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Ltifi, I.; Ayari, F.; Chehimi, D.B.H.; Ayadi, M.T. Physicochemical characteristics of organophilic clays prepared using two organo-modifiers: Alkylammonium cation arrangement models. Appl. Water Sci. 2018, 8, 91. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalination Water Treat. 2015, 57, 13645–13677. [Google Scholar] [CrossRef]
Wavenumbers (cm−1) of Asymmetric and Symmetric CH2 Stretching into the AH Clay | |||||||||
Loading Levels | Surfactants | C12 | C14 | C16 | 2C12 | ||||
Vibrations | CH2Asym | CH2Sym | CH2Asym | CH2Sym | CH2Asym | CH2Sym | CH2Asym | CH2Sym | |
1.0-CEC | Before adsorption | 2926 | 2854 | 2923 | 2852 | 2921 | 2851 | 2924 | 2854 |
2.0-CEC | 2925 | 2854 | 2921 | 2851 | 2920 | 2850 | 2921 | 2853 | |
1.0-CEC | After adsorption | 2926 | 2855 | 2925 | 2854 | 2923 | 2852 | 2925 | 2854 |
2.0-CEC | 2926 | 2855 | 2924 | 2853 | 2920 | 2851 | 2925 | 2854 | |
Wavenumbers (cm−1) of Asymmetric and Symmetric CH2 Stretching into the DI clay | |||||||||
Loading Levels | Surfactants | C12 | C14 | C16 | 2C12 | ||||
Vibrations | CH2Asym | CH2Sym | CH2Asym | CH2Sym | CH2Asym | CH2Sym | CH2Asym | CH2Sym | |
1.0-CEC | Before adsorption | 2926 | 2855 | 2924 | 2853 | 2922 | 2851 | 2925 | 2855 |
2.0-CEC | 2924 | 2854 | 2922 | 2852 | 2920 | 2851 | 2924 | 2854 | |
1.0-CEC | After adsorption | 2925 | 2854 | 2926 | 2854 | 2921 | 2852 | 2926 | 2855 |
2.0-CEC | 2925 | 2854 | 2925 | 2854 | 2921 | 2851 | 2926 | 2855 | |
Surfactants pure | 2918 | 2850 | 2918 | 2849 | 2919 | 2849 | 2921 | 2853 |
Types of Adsorbents | XRPD Analyses | Type of BPA Retention Mechanism | Type of Interactions | References |
---|---|---|---|---|
Organo-montmorillonite | Not presented or not done | Inner and outer retention |
| Park et al. [8] |
Surfactant-modified zeolite | Not presented or not done | Inner and outer retention |
| Dong et al. [17] |
Amphoteric surfactant activated montmorillonite | Marginal change in the d001 basal spacing | BPA is not inserted into the interlayers: outer retention |
| Liu et al. [23] |
C12−, C14−, C16−, 2C12−AH and C12−, C14−, C16−, 2C12−DI organoclays | Increase in the d001 basal spacing |
|
| Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garikoé, I.; Guel, B.; Persson, I. Sorption of Bisphenol A as Model for Sorption Ability of Organoclays. Molecules 2022, 27, 4343. https://doi.org/10.3390/molecules27144343
Garikoé I, Guel B, Persson I. Sorption of Bisphenol A as Model for Sorption Ability of Organoclays. Molecules. 2022; 27(14):4343. https://doi.org/10.3390/molecules27144343
Chicago/Turabian StyleGarikoé, Issaka, Boubié Guel, and Ingmar Persson. 2022. "Sorption of Bisphenol A as Model for Sorption Ability of Organoclays" Molecules 27, no. 14: 4343. https://doi.org/10.3390/molecules27144343
APA StyleGarikoé, I., Guel, B., & Persson, I. (2022). Sorption of Bisphenol A as Model for Sorption Ability of Organoclays. Molecules, 27(14), 4343. https://doi.org/10.3390/molecules27144343