Design, Synthesis and Antifungal Evaluation of Novel Pyrylium Salt In Vitro and In Vivo
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Structure-Activity Relationship (SAR) Studies
2.3. Pharmacological Activity of XY12
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. Synthesis
3.2. In Vitro Antifungal Activity
3.3. Cytotoxicity against Human Umbilical Vein Endothelial Cells (HUVECs)
3.4. In Vivo Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jermy, A. Stop neglecting fungi. Nat. Microbiol. 2017, 2, 17120. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakagami, T.; Kawano, T.; Yamashita, K.; Yamada, E.; Fujino, N.; Kaeriyama, M.; Fukuda, Y.; Nomura, N.; Mitsuyama, J.; Suematsu, H.; et al. Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. J. Infect. Chemother. 2019, 25, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Dhillon, R.; Hughes, H.; Wise, M.P.; Backx, M. COVID-19 and fungal infection: The need for a strategic approach. Lancet Microbe 2020, 1, e196. [Google Scholar] [CrossRef]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multinational prevalence of fungal diseases: Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Mourad, A.; Perfect, J.R. Tolerability profile of the current antifungal armoury. J. Antimicrob. Chemother. 2018, 73, i26–i32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrickson, J.A.; Hu, C.; Aitken, S.L.; Beyda, N. Antifungal Resistance: A Concerning Trend for the Present and Future. Curr. Infect. Dis. Rep. 2019, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tan, J.; Sun, J.; Xu, Z.; Li, M.; Yang, Q.; Shao, H.; Zhang, L.; Liu, W.; Wan, Z.; et al. Invasive candidiasis in intensive care units in China: In vitro antifungal susceptibility in the China-SCAN study. J. Antimicrob. Chemother. 2014, 69, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.S.; Kao, R.Y.; Yuen, K.Y.; Wang, Y.; Yang, D.; Samaranayake, L.P.; Seneviratne, C.J. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS ONE 2014, 9, e85836. [Google Scholar]
- Truong, T.; Suriyanarayanan, T.; Zeng, G.; Le, T.D.; Liu, L.; Li, J.; Tong, C.; Wang, Y.; Seneviratne, C.J. Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Front. Cell. Infect. Microbiol. 2018, 8, 164. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.; Zeng, G.; Lim, T.K.; Cao, T.; Pang, L.M.; Lee, Y.M.; Lin, Q.; Wang, Y.; Seneviratne, C.J. Proteomics Analysis of Candida albicans dnm1 Haploid Mutant Unraveled the Association between Mitochondrial Fission and Antifungal Susceptibility. Proteomics 2020, 20, e1900240. [Google Scholar] [CrossRef] [PubMed]
- Bricks, J.L.; Stanova, A.V.; Ryabitsky, A.B.; Yashchuk, V.M.; Kachkovsky, A.D. Studies of 2-azaazulenium derivatives-3: The nature of electron transitions and spectral properties of styryl dyes containing terminal groups of different types. J. Mol. Struct. 2013, 1033, 215–226. [Google Scholar] [CrossRef]
- Balaban, T.S.; Balaban, A.T. Product Class 1: Pyrylium Salts. In Science of Synthesis, 1st ed.; Thomas, E.J., Ed.; Thieme: Stuttgart, Germany, 2003; pp. 11–200. [Google Scholar]
- Li, D.; Calderone, R. Exploiting mitochondria as targets for the development of new antifungals. Virulence 2017, 8, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.; Liu, J.; Zhang, M.; Shi, H.; Zheng, S.; Jin, X.; Gao, Y.; Wang, S.; Ji, A.; Lou, H. Efflux pump-mediated resistance to antifungal compounds can be prevented by conjugation with triphenylphosphonium cation. Nat. Commun. 2018, 9, 5102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.Y.; Ni, T.J.H.; Wu, J.; Yan, L.; Lv, Q.Z.; Li, L.P.; Zhang, D.Z.; Jiang, Y.Y. New Triazole NT-a9 Has Potent Antifungal Efficacy against Cryptococcus neoformans In Vitro and In Vivo. Antimicrob. Agents Chemother. 2020, 64, e01628-19. [Google Scholar] [CrossRef] [PubMed]
Compounds | R | MIC (μM) | Compounds | R | MIC (μM) |
---|---|---|---|---|---|
XY1A | - | >179.7 | XY11 | >104.7 | |
XY2 | N(CH3)2 | 0.51 | XY12 | 0.24 | |
XY3 | OCH3 | 67.5 | XY13 | 0.95 | |
XY4 | OH | 34.8 | XY14 | 1.0 | |
XY5 | H | 144.1 | XY15 | 3.8 | |
XY6 | F | 138.5 | XY16 | 0.47 | |
XY7 | CN | >136.4 | XY17 | 0.94 | |
XY8 | SO2CH3 | >122.6 | XY18 | 8.7 | |
XY9 | COOCH3 | >127.4 | XY19 | 3.6 | |
XY10 | 0.49 | XY20 | >177.1 |
Candida Isolates | MIC (μM) | ||
---|---|---|---|
XY12 | XY2 | Fluconazole | |
C. albicans SC5314 | 0.24 | 0.51 | 0.82 |
C. albicans Y0109 | 0.24 | 0.51 | 0.40 |
C. albicans 100 | 0.24 | 1.0 | >209.1 |
C. albicans 901 | 0.12 | 2.1 | >209.1 |
C. glabrata 537 | 0.49 | 4.1 | 0.82 |
C. glabrata 896 | 0.97 | 2.1 | 1.6 |
C. glabrata 8535 | 0.24 | 2.1 | 6.5 |
C. tropicalis 753 | 0.24 | 2.1 | 1.6 |
C. tropicalis 112936 | 0.49 | 2.1 | 6.5 |
C. tropicalis 750 | 0.49 | 2.1 | 3.3 |
C. parapsilosis 90018 | 0.49 | 4.1 | 1.6 |
C. parapsilosis 22019 | 0.24 | 4.1 | 3.3 |
C. parapsilosis 700 | 0.24 | 2.1 | 6.5 |
C. krusei 463 | 0.97 | 1.0 | 13.1 |
C. krusei 629 | 0.97 | 2.1 | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Q.; Chao, W.; Qin, Y.; Chen, J.; Wang, Y.; Liu, R.; Lv, Q.; Wang, J. Design, Synthesis and Antifungal Evaluation of Novel Pyrylium Salt In Vitro and In Vivo. Molecules 2022, 27, 4450. https://doi.org/10.3390/molecules27144450
Zhang Y, Li Q, Chao W, Qin Y, Chen J, Wang Y, Liu R, Lv Q, Wang J. Design, Synthesis and Antifungal Evaluation of Novel Pyrylium Salt In Vitro and In Vivo. Molecules. 2022; 27(14):4450. https://doi.org/10.3390/molecules27144450
Chicago/Turabian StyleZhang, Yue, Qiuhao Li, Wen Chao, Yulin Qin, Jiayan Chen, Yingwen Wang, Runhui Liu, Quanzhen Lv, and Jinxin Wang. 2022. "Design, Synthesis and Antifungal Evaluation of Novel Pyrylium Salt In Vitro and In Vivo" Molecules 27, no. 14: 4450. https://doi.org/10.3390/molecules27144450
APA StyleZhang, Y., Li, Q., Chao, W., Qin, Y., Chen, J., Wang, Y., Liu, R., Lv, Q., & Wang, J. (2022). Design, Synthesis and Antifungal Evaluation of Novel Pyrylium Salt In Vitro and In Vivo. Molecules, 27(14), 4450. https://doi.org/10.3390/molecules27144450