Physical Treatment Reduces Trypsin Inhibitor Activity and Modifies Chemical Composition of Marama Bean (Tylosema esculentum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Procurement and Processing of the Bean Samples
2.2. Proximate Analysis
2.3. Amino Acids and Trypsin Inhibitor Analysis
2.4. Statistical Analysis
3. Results
3.1. Proximate Composition of Soybean and Marama Bean
3.2. Amino Acids Composition of the Soybean and Marama Bean
3.3. Assessment of Trypsin Inhibitor Activity in Soybean and Marama Bean
4. Discussion
4.1. Proximate Composition
4.2. Amino Acids
4.3. Trypsin Inhibitor Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jackson, J.C.; Duodu, K.G.; Holse, M.; Lima de Faria, M.D.; Jordaan, D.; Chingwaru, W.; Hansen, A.; Cencic, A.; Kandawa-Schultz, M.; Mpotokwane, S.; et al. The morama bean (Tylosema esculentum). A potential crop for Southern Africa. Adv. Food Nutr. Res. 2010, 61, 187–246. [Google Scholar]
- Omotayo, A.O.; Aremu, A.O. Marama bean [Tylosema esculentum (Burch.) A. Schreib.]: An indigenous plant with potential for food, nutrition, and economic sustainability. Food Funct. 2021, 12, 2389. [Google Scholar] [CrossRef]
- Amonsou, E.; Taylor, J.; Minnaar, A. Microstructure of protein bodies in marama bean Species. LWT-Food Sci. Technol. 2011, 44, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Danek-Majewska, A.; Kwiecie, M.; Winiarska-Mieczan, A.; Haliniarz, M.; Bielak, A. Raw chickpea (Cicer arietinum L.) as a substitute of soybean meal in compound feed for broiler chickens: Effects on growth performance, lipid metabolism, fatty acid profile, antioxidant status, and dietary value of muscles. Animals 2021, 11, 3367. [Google Scholar] [CrossRef]
- Akanji, A.M.; Fasina, O.E.; Ogungbesan, A.M. Effect of raw and processed cowpea on growth and heamatological profile of broiler chicken. Bangladesh J. Anim. Sci. 2016, 45, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Amarteifio, J.A.; Moholo, D. The chemical composition of four legumes consumed in Botswana. J. Food Compos. Anal. 1998, 11, 329–332. [Google Scholar] [CrossRef]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Twaruzek, M.; Kosicki, R.; Grajewski, J.; Wisniewska, Z.; Rutkowski, A. A Comparison of the composition and contamination of soybean cultivated in Europe and limitation of raw soy seed content in weaned pigs’ diets. Animals 2020, 10, 1972. [Google Scholar] [CrossRef]
- Nadaraja, D.; Weintraub, S.T.; Hakala, K.W.; Sherman, N.E.; Starcher, B. Isolation and partial sequence of a Kunitz-type elastase specific inhibitor from marama bean (Tylosema esculentum). J. Enzyme Inhib. Med. Chem. 2009, 25, 377–382. [Google Scholar] [CrossRef]
- Araba, M.; Dale, N.M. Evaluation of KOH solubility as an indicator of overprocessing Soybean meal. J. Poult. Sci. 1990, 69, 76–83. [Google Scholar] [CrossRef]
- Kunitz, M. Crystallization of a trypsin inhibitor. II. General properties. J. Gen. Physiol. 1947, 30, 291–310. [Google Scholar] [CrossRef]
- Dozier, W.A.; Hess, J.B. Soybean meal quality and analytical techniques. In Soybean and Nutrition; El-Shemy, H., Ed.; IntechOpen: London, UK, 2011; pp. 111–124. [Google Scholar] [CrossRef] [Green Version]
- Liener, I.E. Factors affecting the nutritional quality of soya products. J. Am. Oil Chem. Soc. 1981, 58, 406–415. [Google Scholar] [CrossRef]
- Bower, N.; Hertel, K.; Storey, R.; Oh, J. Nutritional evaluation of Marama bean (Tylosema esculentum, Fabaceae): Analysis of the seed. Econ. Bot. 1988, 42, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.S.; Habiba, R.A.; Shatta, A.A.; Embaby, H.E. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Nahrung 2002, 46, 92–95. [Google Scholar] [CrossRef]
- Habiba, R.A. Changes in antinutrients, protein solubility, digestibility and HCL extractibility of ash and phosphorus in vegetable peas as affected by cooking methods. Food Chem. 2002, 77, 187–192. [Google Scholar] [CrossRef]
- Ari, M.M.; Ayanwale, B.A.; Adama, T.Z. Evaluation of different processing methods of soya beans (Glycine max) on its nutritive value and the performance of broilers: A qualitative selection approach for extension. Int. J. Livest. Prod. 2017, 8, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Tousi-Mojarrad, M.; Seidavi1, A.; Dadashbeiki, M.; Roca-Fernandez, A.I. Short communication. Effect of soybean meal heat procedures on growth performance of broiler chickens. Span. J. Agric. Res. 2014, 12, 180–185. [Google Scholar] [CrossRef] [Green Version]
- AOAC [Association of Official Analytical Chemists]. Official Methods of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- AACC [American Association of Cereal Chemists]. Approved Methods of the AACC, 10th ed.; AACC: St. Paul, MN, USA, 1991. [Google Scholar]
- Maruatona, G.N. Physico-Chemical, Nutritional and Functional Properties of Defatted Marama Bean Flour. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2008; pp. 40–68. [Google Scholar]
- Mosele, M.M.; Hansen, A.S.; Hansen, M.; Schulz, A.; Martens, H.J. Proximate composition, histochemical analysis and microstructural localisation of nutrients in immature and mature seeds of marama bean (Tylosema esculentum)—An underutilised legume. Food Chem. 2011, 127, 1555–1561. [Google Scholar] [CrossRef]
- Siulapwa, N.; Mwambungu, A. Nutritional value of differently processed soybean seeds. Int. J. Res. in Agric. Food Sci. 2014, 2, 8–16. [Google Scholar]
- Sharma, D.; Gupta, R.; Joshi, I. Nutrient analysis of raw and processed soybean and development of value added soybean noodles. Inventi. Rapid Life Style 2014, 1, 1–5. [Google Scholar]
- Emiola, I.A.; Ologhobo, A.D.; Adedeji, O.S.; Akanji, T.A.; Olayeni, T.B. Effect of residual trypsin inhibitor and heamagglutinin in differently processed kidney beans seed on feed intake and performance characteristics of broilers. In Proceedings of the 7th Annual Conference of Animal Science Association of Nigeria, Federal University of Agriculture, Abeokuta, Nigeria, 16–19 September 2002; pp. 75–76. [Google Scholar]
- Mmonatau, V. Flour from the Morama Bean: Composition and Sensory Properties in a Botswana Perspective. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2005; p. 29. [Google Scholar]
- Huma, N.; Anjum, F.M.; Sehar, S.; Khan, M.I.; Hussain, S. Effect of soaking and cooking on nutritional quality and safety of legumes. Nutr. Food Sci. 2008, 38, 570–577. [Google Scholar] [CrossRef]
- Jannathulla, R.; Dayal, J.S.; Ambasankar, K.; Khan, H.I.; Madhubabu, E.P.; Muralidhar, M. Effect of protein solubility of soybean meal on growth, digestibility and nutrient utilization in Penaeus vannamei. Aquac. Int. 2017, 25, 1693–1706. [Google Scholar] [CrossRef]
- Karr-Lilienthal, L.K.; Grieshop, C.M.; Merchen, N.R.; Mahan, D.C.; Fahey, G.C. Chemical composition and protein quality comparisons of soybeans and soybean meals from five leading soybean-producing countries. J. Agric. Food Chem. 2004, 52, 6193–6199. [Google Scholar] [CrossRef] [PubMed]
- Kaewtapee, C.; Eklund, M.; Wiltafsky, M.; Piepho, H.P.; Mosenthin, R.; Rosenfelder, P. Influence of wet heating and autoclaving on chemical composition and standardized ileal crude protein and amino acid digestibility in full-fat soybeans for pigs. J. Anim. Sci. 2017, 95, 779–788. [Google Scholar] [CrossRef] [PubMed]
Sample (SB/MB) 1 | Description |
---|---|
R | Raw |
S | Soaked for 24 h |
C10 | Cooking for 10 min |
C20 | Cooking for 20 min |
C30 | Cooking for 30 min |
A1/5 | Steam autoclaving at 110 °C and 7 psi for 5 min |
A1/15 | Steam autoclaving at 110 °C and 7 psi for 15 min |
A1/30 | Steam autoclaving at 110 °C and 7 psi for 30 min |
A2/5 | Steam autoclaving at 121 °C and 17 psi for 5 min |
A2/15 | Steam autoclaving at 121 °C and 17 psi for 15 min |
A2/30 | Steam autoclaving at 121 °C and 17 psi for 30 min |
S1/5 | Presoaked for 24 h and steam autoclaving at 110 °C and 7 psi for 5 min |
S1/15 | Presoaked for 24 h and steam autoclaving at 110 °C and 7 psi for 15 min |
S1/30 | Presoaked for 24 h and steam autoclaving at 110 °C and 7 psi for 30 min |
S2/5 | Presoaked for 24 h and steam autoclaving at 121 °C and 17 psi for 5 min |
S2/15 | Presoaked for 24 h and steam autoclaving at 121 °C and 17 psi for 15 min |
S2/30 | Presoaked for 24 h and steam autoclaving at 121 °C and 17 psi for 30 min |
Dry Matter | Ash | Crude Protein | Crude Fat | NDF | ADF | Gross Energy (Joule/g) | |
---|---|---|---|---|---|---|---|
Soybean | 90.22 (0.05) | 4.57 (0.55) | 34.79 (0.21) | 17.22 (1.13) | 14.73 (5.03) | 8.34 (0.31) | 22,800.33 (3.62) |
Marama bean | 94.03 (0.11) | 2.88 (1.63) | 32.72 (0.37) | 38.67 (1.57) | 7.51 (4.02) | 3.43(0.36) | 27,982.00 (3.12) |
Treaments 1 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Sub 3 | R | S | C10 | C20 | C30 | A1/5 | A1/15 | A1/30 | A2/5 | A2/15 | A2/30 | S1/5 | S1/15 | S1/30 | S2/5 | S2/15 | S2/30 | SEM 2 |
Moisture | SB | 9.78 aA | 5.50 klA | 7.16 bcdA | 7.66 bA | 7.68 bA | 6.43 e–hA | 7.35 bcA | 6.95 cdeA | 6.03 h–kA | 6.28 f–iA | 4.54 mnoA | 6.02 h–kA | 6.80 c–fA | 6.62 d–gA | 6.22 f–jA | 6.17 g–jA | 5.12 mlA | 2.04 |
MB | 5.97 h–kB | 4.60 mnB | 5.65 jklB | 5.90 h–kB | 5.78 ijkB | 4.54 noB | 4.52 noB | 3.70 pB | 4.50 noB | 4.49 noB | 3.87 pB | 4.47 noB | 4.56 mnoB | 3.60 pB | 4.51 noB | 3.99 opB | 2.68 qB | ||
DM 4 | SB | 90.22 cB | 87.50 hB | 89.51 dB | 88.33 fgB | 88.24 fgB | 88.46 fB | 87.03 ijkB | 86.05 lmB | 87.26 hijB | 86.78 kB | 86.10 lmB | 86.98 jkB | 86.20 lB | 85.38 nB | 86.78 kB | 85.84 mB | 85.24 nB | 0.16 |
MB | 94.03 aA | 89.40 deA | 91.30 bA | 90.13 cA | 89.08 eA | 90.36 cA | 90.23 eA | 89.48 dA | 89.50 dA | 89.51 dA | 89.12 eA | 89.10 eA | 88.30 fgA | 88.07 gA | 87.49 hA | 87.51 hA | 87.30 hiA | ||
Ash | SB | 5.07 aA | 4.44 bcA | 4.66 bA | 4.40 cA | 4.26 cA | 3.68 dA | 3.49 deA | 3.51 deA | 3.69 dA | 3.58 deA | 3.50 deA | 3.16 gA | 3.41 efA | 3.61 deA | 3.07 gA | 3.47 deA | 3.21 fgA | 0.85 |
MB | 3.06 gB | 2.53 hB | 2.40 hB | 2.32 hB | 2.48 hB | 2.07 jB | 1.92 jB | 2.09 jB | 1.95 jB | 2.09 jB | 1.96 jB | 1.89 jB | 1.93 jB | 1.98 jB | 2.09 ijB | 2.05 jB | 2.06 jB | ||
CP 5 | SB | 38.57 jA | 41.70 fgA | 39.40 ijA | 40.35 hiA | 41.12 hgA | 42.17 fA | 45.33 cdeA | 44.62 eA | 42.22 fA | 44.41 eA | 44.39 eA | 44.80 eA | 47.25 abA | 46.31 bcA | 45.11 deA | 46.05 cdA | 47.46 aA | 3.63 |
MB | 34.80 nB | 36.87 klmB | 35.78 mnB | 36.46 klmB | 35.95 lmB | 36.42 klmB | 36.84 klB | 36.62 klmB | 36.89 klB | 35.91 lmB | 37.17 kB | 37.02 kB | 36.60 klmB | 36.88 klB | 36.36 klmB | 36.60 klmB | 36.50 klmB |
Parameter | Sp 3 | R | S | C10 | C20 | C30 | A1/5 | A1/15 | A1/30 | A2/5 | A2/15 | A2/30 | S1/5 | S1/15 | S1/30 | S2/5 | S2/15 | S2/30 | SEM 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alanine | SB | 1.49 f–kA | 1.43 h–lA | 1.69 deA | 1.55 e–jA | 1.82 bcdA | 1.59 e–hA | 2.05 aA | 1.93 abcA | 1.71 deA | 1.93 abcA | 1.66 defA | 1.81 cdA | 2.01 abA | 1.64 d–gA | 1.91 abcA | 1.95 abcA | 1.81 cdA | 0.07 |
MB | 1.31 k–nB | 1.20 nB | 1.45 g–lB | 1.24 mnB | 1.32 k–nB | 1.31 k–nB | 1.28 lmnB | 1.56 e–iB | 1.35 k–nB | 1.27 lmnB | 1.45 g–lB | 1.23 nB | 1.25 mnB | 1.39 i–nB | 1.28 lmnB | 1.38 i–nB | 1.36 j–nB | ||
Arginine | SB | 2.48 klmB | 2.34 mB | 2.94 d–gA | 2.85 e–kA | 3.03 c–fA | 3.19 a–eA | 3.55 aA | 3.19 a–eA | 2.86 e–jA | 3.16 b–eA | 3.31 abcA | 3.14 b–eA | 3.35 abcA | 2.66 g–mA | 3.48 abA | 3.31 abcA | 2.92 e–hA | 0.13 |
MB | 2.71 f–mA | 2.51 j–mA | 2.88 e–iB | 2.48 klmB | 2.56 h–mB | 2.51 j–mB | 2.52 i–mB | 3.14 b–eB | 2.72 f–lB | 2.49 klmB | 2.93 e–hB | 2.50 j–mB | 2.60 g–mB | 2.62 g–mA | 2.42 lmB | 2.65 g–mB | 2.35 mB | ||
Aspartic acid | SB | 4.00 i–lB | 4.11 h–lA | 4.45 e–kB | 4.25 f–lA | 4.79 b–fA | 4.78 b–fA | 5.08 abcA | 5.11 abA | 4.51 c–jA | 5.01 a–dA | 3.90 klB | 4.76 b–gA | 5.41 aA | 4.41 e–kA | 4.96 a–eA | 5.04 abcA | 4.64 b–hA | 0.21 |
MB | 4.08 h–lA | 3.78 lB | 4.63 b–hA | 3.81 lB | 4.12 h–lB | 4.04 i–lB | 3.99 i–lB | 4.95 a–eB | 4.22 f–lB | 3.94 jklB | 4.54 b–iA | 3.82 lB | 3.88 klB | 4.20 g–lB | 3.89 klB | 4.17 h–lB | 4.19 g–lB | ||
Glutamic acid | SB | 5.24 f–iA | 5.24 f–iA | 6.00 b–fA | 5.75 e–hA | 6.30 b–eA | 5.30 f–iA | 6.72 abA | 6.63 abcA | 5.87 c–gA | 6.50 a–eA | 5.31 f–iA | 6.28 b–eA | 7.11 aA | 5.76 e–hA | 6.56 a–dA | 6.47 a–eA | 5.83 d–gA | 0.28 |
MB | 4.98 hijB | 4.57 ijkB | 5.25 f–iB | 4.30 jkB | 4.55 ijkB | 4.18 kB | 4.20 kB | 5.20 ghiB | 4.41 jkB | 3.93 kB | 5.04 hijB | 3.94 kB | 4.10 kB | 4.19 kB | 3.95 kB | 4.10 kB | 4.00 kB | ||
Glycine | SB | 1.55 opB | 1.45 pB | 1.89 k–nB | 1.81 mnB | 2.00 j–lB | 2.08 jkB | 2.35 ghiB | 2.06 jkB | 1.83 lmnB | 2.03 j–lB | 2.43 fghB | 2.05 j–klB | 2.13 ijB | 1.73 noB | 2.19 hijB | 2.45 efgB | 1.88 k–nB | 0.08 |
MB | 2.70 bcdA | 2.44 efgA | 2.73 bcA | 2.51 c–gA | 2.46 efgA | 2.44 efgA | 2.46 efgA | 3.04 aA | 2.67 b–eA | 2.47 d–gA | 2.81 abA | 2.44 efgA | 2.54 c–gA | 2.63 b–fA | 2.47 d–gA | 2.56 c–gA | 2.35 ghiA | ||
Histidine | SB | 0.94 lmB | 0.87 mB | 1.10 e–lB | 1.05 g–lA | 1.15 d–kA | 1.32 a–dA | 1.26 a–eA | 1.18 c–hA | 1.05 g–lA | 1.16 d–jA | 1.37 abA | 1.20 b–gA | 1.24 a–fA | 1.01 h–mB | 1.39 aA | 1.35 abcA | 1.08 f–lA | 0.06 |
MB | 1.07 f–lA | 1.00 i–mA | 1.12 e–kA | 1.01 h–mB | 1.01 h–mB | 1.00 j–mB | 0.98 klmB | 1.26 a–eB | 1.10 e–lB | 1.00 j–mB | 1.18 c–hB | 1.00 i–mB | 1.04 g–mB | 1.06 g–lA | 0.98 klmB | 1.07 f–lB | 0.98 klmB | ||
Isoleucine | SB | 1.54 ijkA | 1.34 kB | 1.72 e–iA | 1.46 jkB | 1.87 b–eA | 1.83 b–fA | 2.15 aA | 1.89 b–eB | 1.60 g–iB | 1.96 a–dA | 1.77 d–hB | 1.84 b–fA | 2.03 abA | 1.64 e–iB | 1.95 a–dA | 1.96 a–dA | 1.86 b–eA | 0.08 |
MB | 1.54 ijkA | 1.55 ijkA | 1.70 e–iA | 1.59 g–iA | 1.64 f–iB | 1.70 e–iB | 1.61 g–iB | 2.00 abcA | 1.76 d–hA | 1.52 ijkB | 1.87 b–eA | 1.60 g–iB | 1.58 hijB | 1.71 e–iA | 1.58 hijB | 1.80 c–gB | 0.98 lB | ||
Leucine | SB | 2.71 jklA | 2.54 l–oA | 3.05 ghiA | 2.82 ijkA | 3.27 efgA | 3.31 defA | 3.76 abA | 3.50 cdA | 3.11 fghA | 3.53 bcdA | 3.41 deA | 3.41 deA | 3.68 abcA | 3.00 hiA | 3.65 abcA | 3.79 aA | 3.37 deA | 0.08 |
MB | 2.41 m–pB | 2.27 pB | 2.63 klmB | 2.31 opB | 2.40 m–pB | 2.37 nopB | 2.38 nopB | 2.93 hijB | 2.56 lmnB | 2.38 nopB | 2.71 jklB | 2.33 nopB | 2.39 nopB | 2.48 l–pB | 2.39 m–pB | 2.55 lmnB | 2.56 lmnB | ||
Lysine | SB | 2.18 g–oA | 2.14 i–oA | 2.44 c–gA | 2.22 f–nA | 2.60 bcdA | 2.56 b–eA | 2.60 bcdA | 2.66 abcA | 2.33 e–jA | 2.67 abcA | 2.23 f–nB | 2.55 b–eA | 2.88 aA | 2.32 e–jA | 2.48 b–fA | 2.72 abA | 2.39 d–i | 0.09 |
MB | 2.04 l–oB | 1.94 oB | 2.42 c–gA | 1.94 oB | 2.19 g–oB | 2.20 g–oB | 2.11 j–oB | 2.57 b–eB | 2.17 h–oB | 1.99 noB | 2.36 d–jA | 2.00 mnoB | 2.04 l–oB | 2.21 g–nB | 2.09 k–oB | 2.26 f–lB | 2.25 f–m | ||
Phenylalanine | SB | 1.77 jkB | 1.67 kB | 2.15 d–jA | 2.63 abcA | 2.27 c–iA | 2.59 abcA | 2.82 aA | 2.38 b–eA | 2.15 d–jA | 2.41 a–eA | 2.65 abcA | 2.37 b–fA | 2.48 a–dA | 2.03 e–kA | 2.75 abA | 2.81 aA | 2.28 c–hA | 0.14 |
MB | 2.02 e–kA | 1.86 ijkA | 2.02 e–kB | 1.89 h–kB | 1.86 ijkB | 1.81 jkB | 1.85 jkB | 2.31 c–gB | 2.05 e–kB | 1.95 g–kB | 2.14 d–jB | 1.86 ijkB | 1.93 g–kB | 1.92 g–kB | 1.86 ijkB | 1.97 f–kB | 1.93 g–kB | ||
Proline | SB | 1.90 jB | 1.81 jB | 2.18 hiB | 1.97 ijB | 2.40 fghB | 2.58 fB | 1.98 ijB | 2.52 fgB | 2.18 hiB | 2.48 fgB | 2.48 fgB | 2.48 fgB | 2.63 fB | 2.18 hiB | 2.52 fgB | 3.14 eB | 2.29 ghB | 0.09 |
MB | 3.46 bcdA | 3.16 eA | 3.52 bcA | 3.24 deA | 3.17 eA | 3.11 eA | 3.26 cdeA | 3.93 aA | 3.46 bcdA | 3.22 deA | 3.53 bA | 3.18 eA | 3.23 deA | 3.31 b–eA | 3.34 b–eA | 3.26 cdeA | 3.20 eA | ||
Serine | SB | 1.88 m | 1.87 m | 2.16 i–l | 2.04 lm | 2.25 e–k | 2.37 c-i | 2.5 a–d | 2.44 c–g | 2.25 f-l | 2.40 c-h | 2.38 c–i | 2.32 c–j | 2.51 a–d | 2.10 j–m | 2.69 ab | 2.74 a | 2.23 g–l | 0.08 |
MB | 2.26 e–l | 2.04 lm | 2.54 abc | 2.06 klm | 2.22 g–l | 2.18 h–l | 2.13 jkl | 2.69 b | 2.30 d–j | 2.22 g–l | 2.48 b–f | 2.09 j–m | 2.25 f–l | 2.49 b–e | 2.17 h–l | 2.39 c–i | 2.23 f–l | ||
Threonine | SB | 1.32 h–kA | 1.30 i–lA | 1.58 defA | 1.51 efgA | 1.64 b–fA | 1.57 defA | 1.79 abcA | 1.72 a–dA | 1.58 defA | 1.73 a–dA | 1.66 b–eA | 1.62 c–fA | 1.80 abA | 1.48 fghA | 1.87 aA | 1.87 a | 1.59 defA | 0.06 |
MB | 1.22 i–lB | 1.14 lB | 1.38 ghiB | 1.14 lB | 1.23 i–lB | 1.20 klB | 1.19 klB | 1.49 fgB | 1.28 i–lB | 1.21 jklB | 1.37 g–jB | 1.15 lB | 1.21 jklB | 1.26 i–lB | 1.17 klB | 1.29 i–lB | 1.25 i–lB | ||
Tyrosine | SB | 1.29 lmB | 1.21 mB | 1.57 j–mB | 1.45 klmB | 1.65 i–lB | 1.69 i–lB | 2.06 hiB | 1.74 ijkB | 1.56 j–mB | 1.73 ijkB | 2.44 hB | 1.74 ijkB | 1.78 ijkB | 1.48 klmB | 1.99 iB | 1.95 ijB | 1.66 i–lB | 0.15 |
MB | 5.10 aA | 4.52 bcA | 4.70 abA | 4.25 cdA | 4.07 defA | 3.61 gA | 3.80 efgA | 4.73 abA | 4.12 cdeA | 3.65 gA | 4.79 abA | 3.64 gA | 3.91 d–gA | 3.69 fgA | 3.65 gA | 3.59 gA | 3.53 gA | ||
Valine | SB | 1.75 jkA | 1.49 lB | 1.91 e–jB | 1.65 klB | 2.07 b–fA | 2.02 c–iA | 2.37 aA | 2.07 b–fB | 1.76 jkB | 2.17 a–d | 1.95 d–jB | 2.01 c–iA | 2.24 abcA | 1.85 f–jB | 1.76 jkB | 2.23 abcA | 2.05 c–hA | 0.08 |
MB | 1.77 jkA | 1.78 jkA | 1.95 d–jA | 1.83 g–kA | 1.88 f–iB | 1.95 d–jB | 1.84 g–kB | 2.28 abA | 2.01 c–iA | 1.74 kB | 2.13 b–eA | 1.82 h–kB | 1.80 ijkB | 1.97 d–jA | 1.80 ijkA | 2.05 b–gB | 2.04 c–hA |
Treaments 1 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Sub 4 | R | S | C10 | C20 | C30 | A1/5 | A1/15 | A1/30 | A2/5 | A2/15 | A2/30 | S1/5 | S1/15 | S1/30 | S2/5 | S2/15 | S2/30 | SEM 2 |
TUI 3 | SB | 66.98 cB | 54.04 dB | 11.52 gB | 5.21 hijB | 2.49 jB | 3.69 hijB | 3.09 hijB | 2.49 jB | 1.89 JB | 1.89 jB | 1.51 jB | 3.38 hijB | 2.69 ijB | 2.19 jB | 1.91 jB | 2.12 jB | 1.60 jB | 2.22 |
MB | 245.25 bA | 271.98 aA | 47.08 eA | 18.22 fA | 9.12 ghA | 8.85 ghiA | 7.32 g–jA | 5.40 g–jA | 6.56 g–iA | 4.23 hijA | 3.00 hijA | 7.73 g–jA | 5.76 g–jA | 5.05 hijA | 6.26 g–jA | 4.22 hijA | 2.66 ijA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabi, F.; Kiarie, E.G.; Mnisi, C.M.; Mlambo, V. Physical Treatment Reduces Trypsin Inhibitor Activity and Modifies Chemical Composition of Marama Bean (Tylosema esculentum). Molecules 2022, 27, 4451. https://doi.org/10.3390/molecules27144451
Alabi F, Kiarie EG, Mnisi CM, Mlambo V. Physical Treatment Reduces Trypsin Inhibitor Activity and Modifies Chemical Composition of Marama Bean (Tylosema esculentum). Molecules. 2022; 27(14):4451. https://doi.org/10.3390/molecules27144451
Chicago/Turabian StyleAlabi, Funmilola, Elijah G. Kiarie, Caven Mguvane Mnisi, and Victor Mlambo. 2022. "Physical Treatment Reduces Trypsin Inhibitor Activity and Modifies Chemical Composition of Marama Bean (Tylosema esculentum)" Molecules 27, no. 14: 4451. https://doi.org/10.3390/molecules27144451
APA StyleAlabi, F., Kiarie, E. G., Mnisi, C. M., & Mlambo, V. (2022). Physical Treatment Reduces Trypsin Inhibitor Activity and Modifies Chemical Composition of Marama Bean (Tylosema esculentum). Molecules, 27(14), 4451. https://doi.org/10.3390/molecules27144451