First Report of Fruit Rot of Cherry and Its Control Using Fe2O3 Nanoparticles Synthesized in Calotropis procera
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Microscopic Identification of the Isolated Pathogen
2.2. Molecular Identification and Phylogenetic Analysis of the Isolated Pathogen
2.3. Characterization of Nanoparticles
2.4. Disease Control of Fe2O3 NPs, In Vitro and In Vivo
3. Materials and Methods
3.1. Collection of Rotten Cherry Fruits
3.2. Isolation of Pathogen
3.3. Macroscopic and Microscopic Identification of Isolated Pathogen
3.4. Molecular Identification of Fungal Species
3.5. Pathogenicity Test
3.6. Collection and Preparation of Leaf Extract of Calotropis procera
3.7. Synthesis of Iron Oxide Nanoparticles (Fe2O3 NPs)
3.8. Characterization of Nanoparticles
3.9. Fourier Transformed Infrared (FTIR) Spectroscopy
3.10. X-ray Diffraction Analysis of Iron Oxide Nanoparticles
3.11. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis
3.12. Application of Fe2O3 NPs, In Vitro
3.13. Application of Fe2O3 NPs to Control Fruit Rot, In Vivo
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement:
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gao, L.; Mazza, G. Characterization, quantitation, and distribution of anthocyanins and colorless phenolics in sweet cherries. J. Agric. Food Chem. 1995, 43, 343–346. [Google Scholar] [CrossRef]
- Serradilla, M.J.; Hernández, A.; López-Corrales, M.; Ruiz-Moyano, S.; de Guía Córdoba, M.; Martín, A. Composition of the Cherry (Prunus avium L. and Prunus cerasus L.; Rosaceae). In Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2016; pp. 127–147. [Google Scholar]
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2010, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.D.; Atkinson, C.J.; Vaughan, S.J.; Lucas, A.S. Controlling the shoot growth and cropping of sweet cherry trees using root pruning or root restriction techniques. In Proceedings of the VI International Symposium o Integrated Canopy, Rootstock, Environmental Physiology in Orchard Systems, Wenatchee, WA, USA, 17 July 1996; Volume 451, pp. 643–652. [Google Scholar]
- Ahmad, S.; Saddozai, K.N.; Khan, M.; Afridi, S. Cherry marketing system in Gilgit District, Northern Areas of Pakistan. Sarhad J. Agric. 2008, 24, 771–777. [Google Scholar]
- Noor, R.S.; Hussain, F.; Farooq, M.U.; Umair, M. Cost and profitability analysis of cherry production: The case study of district Quetta, Pakistan. Big Data Agric. 2020, 2, 65–71. [Google Scholar] [CrossRef]
- Ciancio, A.; Mukerji, K.G. (Eds.) Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria; Springer Science Business Media: Berlin/Heildeberg, Germany, 2008; Volume 3. [Google Scholar]
- Kalajdžić, J.; Mili, C.B.; Stankov, A.; Petreš, M.; Grahovac, M.; Vukotić, J. Potential of wild oregano essential oil in control of Monilinia rot on stored sweet cherry fruits. Rom. Biotechnol. Lett. 2021, 26, 2779–2787. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.K.; Rawat, S.S.; Jain, D.K.; Ghosh, S. Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian J. Environ. Sci. 2013, 8, 51–57. [Google Scholar]
- Zaker, M. Natural plant products as eco-friendly fungicides for plant diseases control—A review. Agriculturists 2016, 14, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Saqib, S.; Zaman, W.; Ayaz, A.; Habib, S.; Bahadur, S.; Hussain, S.; Ullah, F. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatal. Agric. Biotechnol. 2020, 28, 101729. [Google Scholar] [CrossRef]
- Ali, M.; Haroon, U.; Khizar, M.; Chaudhary, H.J.; Munis, M.F.H. Facile single step preparations of phyto-nanoparticles of iron in Calotropis procera leaf extract to evaluate their antifungal potential against Alternaria alternata. Curr. Plant Biol. 2020, 23, 100157. [Google Scholar] [CrossRef]
- Sivakumar, J.; Premkumar, C.; Santhanam, P.; Saraswathi, N. Biosynthesis of silver nanoparticles using Calotropis gigantean leaf. Afr. J. Basic Appl. Sci. 2011, 3, 265–270. [Google Scholar]
- Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanosci. Nanotechnol. 2012, 2, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Hira Zafar, M.Z.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A.K. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2016, 46, 443–466. [Google Scholar] [CrossRef]
- Gawade, V.V.; Gavade, N.L.; Shinde, H.M.; Babar, S.B.; Kadam, A.N.; Garadkar, K.M. Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J. Mater. Sci. Mater. Electron. 2017, 28, 14033–14039. [Google Scholar] [CrossRef]
- Klich, M.A. Biogeography of Aspergillus species in soil and litter. Mycologia 2002, 94, 21–27. [Google Scholar] [CrossRef]
- Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater. Lett. 2012, 75, 196–199. [Google Scholar] [CrossRef]
- Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Venu, R.; Ramulu, T.S.; Anandakumar, S.; Rani, V.S.; Kim, C.G. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 733–738. [Google Scholar] [CrossRef]
- Zambri, N.D.S.; Taib, N.I.; Abdul Latif, F.; Mohamed, Z. Utilization of Neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules 2019, 24, 3803. [Google Scholar] [CrossRef] [Green Version]
- Saqib, S.; Munis, M.F.H.; Zaman, W.; Ullah, F.; Shah, S.N.; Ayaz, A.; Bahadur, S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc. Res. Tech. 2019, 82, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Oussou-Azo, A.F.; Nakama, T.; Nakamura, M.; Futagami, T.; Vestergaard, M.D.C.M. Antifungal potential of nanostructured crystalline copper and its oxide forms. Nanomaterials 2020, 10, 1003. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A. Copper oxide nanoparticles: Synthesis, characterization and their antibacterial activity. J. Clust. Sci. 2011, 22, 121–129. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Baskaran, R.; Vijayakumar, R.; Mohan, P.M. Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malays J. Microbiol. 2011, 7, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Tsuneo. Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Arif, S.; Liaquat, F.; Khizar, M.; Shah, I.H.; Inam, W.; Chaudhary, H.J.; Munis, M.F.H. First report of Rhizopus oryzae causing fruit rot of yellow oleander in Pakistan. Can. J. Plant Pathol. 2017, 39, 361–364. [Google Scholar] [CrossRef]
Peak Number | Absorption (cm−1) in Sample | Absorption (cm−1) in Standard Table | Appearance | Group | Compound Class |
---|---|---|---|---|---|
1 | 1379.30 | 1390–1380 | Medium | C-H bending | Aldehyde |
2 | 1124.92 | 1124–1087 | Strong | C-O stretching | secondary alcohol |
3 | 825.37 | 850–550 | Strong | C-Cl stretching | halo compound |
4 | 554.74 | 690–515 | Strong | C-Br stretching | halo compound |
5 | 517.40 | 600–500 | Strong | C-I stretching | halo compound |
6 | 527.93 | 690–515 | Strong | C-Br stretching | halo compound |
Peak Number | 2θ | D (nm) | Average Size |
---|---|---|---|
1 | 11 | 30.432 | 32.261 |
2 | 15.5 | 29.143 | |
3 | 20.8 | 25.678 | |
4 | 32 | 23.511 | |
5 | 43.5 | 24.806 | |
6 | 50.7 | 59.995 |
Treatment | Growth Inhibition (%) |
---|---|
0.25 mg/mL | 55.8 ± 2.1 |
0.50 mg/mL | 62 ± 4.6 |
0.75 mg/mL | 75.8 ± 4.1 |
1.0 mg/mL | 89.6 ± 2.2 |
Treatment | Diseased Area (mm) |
---|---|
Control | 81 ± 2.1 |
0.25 mg/mL | 39.8 ± 2.1 |
0.50 mg/mL | 34 ± 4.6 |
0.75 mg/mL | 30.8 ± 4.1 |
1.0 mg/mL | 25 ± 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubair, M.S.; Munis, M.F.H.; Alsudays, I.M.; Alamer, K.H.; Haroon, U.; Kamal, A.; Ali, M.; Ahmed, J.; Ahmad, Z.; Attia, H. First Report of Fruit Rot of Cherry and Its Control Using Fe2O3 Nanoparticles Synthesized in Calotropis procera. Molecules 2022, 27, 4461. https://doi.org/10.3390/molecules27144461
Zubair MS, Munis MFH, Alsudays IM, Alamer KH, Haroon U, Kamal A, Ali M, Ahmed J, Ahmad Z, Attia H. First Report of Fruit Rot of Cherry and Its Control Using Fe2O3 Nanoparticles Synthesized in Calotropis procera. Molecules. 2022; 27(14):4461. https://doi.org/10.3390/molecules27144461
Chicago/Turabian StyleZubair, Mohammad Sameer, Muhammad Farooq Hussain Munis, Ibtisam M. Alsudays, Khalid H. Alamer, Urooj Haroon, Asif Kamal, Musrat Ali, Junaid Ahmed, Zimen Ahmad, and Houneida Attia. 2022. "First Report of Fruit Rot of Cherry and Its Control Using Fe2O3 Nanoparticles Synthesized in Calotropis procera" Molecules 27, no. 14: 4461. https://doi.org/10.3390/molecules27144461
APA StyleZubair, M. S., Munis, M. F. H., Alsudays, I. M., Alamer, K. H., Haroon, U., Kamal, A., Ali, M., Ahmed, J., Ahmad, Z., & Attia, H. (2022). First Report of Fruit Rot of Cherry and Its Control Using Fe2O3 Nanoparticles Synthesized in Calotropis procera. Molecules, 27(14), 4461. https://doi.org/10.3390/molecules27144461