Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone
Abstract
:1. Introduction
2. Results
2.1. Curcumin Modified Plasma Antioxidant Enzymes Activities during Ozone Exposure
2.1.1. CAT Activity
2.1.2. SOD Activity
2.1.3. GPx Activity
2.1.4. Inhibition of MDA and 4-HNE Formation by CUR
2.1.5. Curcumin Inhibited Oxidative Damage to Hippocampal Proteins
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Diet
4.3. Experimental Design
4.4. Ozone Exposure
4.5. Plasma Sample Obtention
4.6. Hippocampus Processing
4.7. Estimation of Antioxidant Enzyme Activity
4.8. Inhibition of MDA and 4-HNE Formation by CUR
4.9. Protein Carbonylation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hooper, L.G.; Kaufman, J.D. Ambient Air Pollution and Clinical Implications for Susceptible Populations. Ann. Am. Thorac. Soc. 2018, 15, S64–S68. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Liao, H.; Zhang, L.; Yue, X.; Dang, R.; Yang, Y. Persistent ozone pollution episodes in North China exacerbated by regional transport. Environ. Pollut. 2020, 265, 115056. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Mok Kim, S.; Han, S. Ozone-induced inactivation of antioxidant enzymes. Biochimie 2003, 85, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Arancibia, S.; Vazquez-Sandoval, R.; Gonzalez-Kladiano, D.; Schneider-Rivas, S.; Lechuga-Guerrero, A. Effects of ozone exposure in rats on memory and levels of brain and pulmonary superoxide dismutase. Environ. Res. 1998, 76, 33–39. [Google Scholar] [CrossRef]
- Rivas-Arancibia, S.; Hernández-Zimbrón, L.F.; Rodríguez-Martínez, E.; Borgonio-Pérez, G.; Velumani, V.; Durán-Bedolla, J. Chronic exposure to low doses of ozone produces a state of oxidative stress and blood-brain barrier damage in the hippocampus of rat. Adv. Biosci. Biotechnol. 2013, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Nery-Flores, S.D.; Mendoza-Magaña, M.L.; Ramírez-Herrera, M.A.; Ramírez-Vázquez, J.d.J.; Romero-Prado, M.M.d.J.; Cortez-Álvarez, C.R.; Ramírez-Mendoza, A.A. Curcumin Exerted Neuroprotection against Ozone-Induced Oxidative Damage and Decreased NF-κB Activation in Rat Hippocampus and Serum Levels of Inflammatory Cytokines. Oxidative Med. Cell. Longev. 2018, 2018, 9620684. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Zhan, P.; Wang, Q.; Wang, C.; Liu, Y.; Yu, Z.; Zhang, S. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem. Biophys. Res. Commun. 2019, 514, 691–698. [Google Scholar] [CrossRef]
- Cuadrado, A.; Rojo, A.I.; Wells, G.; Hayes, J.D.; Cousin, S.P.; Rumsey, W.L.; Attucks, O.C.; Franklin, S.; Levonen, A.-L.; Kensler, T.W.; et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019, 18, 295–317. [Google Scholar] [CrossRef] [Green Version]
- Holze, C.; Michaudel, C.; Mackowiak, C.; Haas, D.A.; Benda, C.; Hubel, P.; Pennemann, F.L.; Schnepf, D.; Wettmarshausen, J.; Braun, M.; et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 2018, 19, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, N.; Victor, V.M. Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications. Antioxid. Redox Signal. 2015, 22, 686–729. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B. Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med. Cell. Longev. 2011, 2011, 194586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykkesfeldt, J.; Michels, A.J.; Frei, B. Vitamin C. Adv. Nutr. 2014, 5, 16–18. [Google Scholar] [CrossRef]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005, 142, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Besag, F.M.C.; Vasey, M.J.; Lao, K.S.J.; Wong, I.C.K. Adverse Events Associated with Melatonin for the Treatment of Primary or Secondary Sleep Disorders: A Systematic Review. CNS Drugs 2019, 33, 1167–1186. [Google Scholar] [CrossRef]
- Lambrinoudaki, I. Progestogens in postmenopausal hormone therapy and the risk of breast cancer. Maturitas 2014, 77, 311–317. [Google Scholar] [CrossRef]
- Løkkegaard, E.C.L.; Mørch, L.S. Tibolone and risk of gynecological hormone sensitive cancer. Int. J. Cancer 2018, 142, 2435–2440. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci. 2009, 30, 85–94. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Arriaga, L.; Mendoza-Magaña, M.L.; Cortés-Zárate, R.; Corona-Rivera, A.; Bobadilla-Morales, L.; Troyo-Sanromán, R.; Ramírez-Herrera, M.A. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop. 2006, 98, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Jhurani, S.; Aggarwal, B.B. Multi-targeted therapy by curcumin: How spicy is it? Mol. Nutr. Food Res. 2008, 52, 1010–1030. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2012, 15, 195–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: From farm to pharmacy. BioFactors 2013, 39, 2–13. [Google Scholar] [CrossRef]
- Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS ONE 2019, 14, e0216711. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Magaña, M.L.; Espinoza-Gutiérrez, H.A.; Nery-Flores, S.D.; Ramírez-Mendoza, A.A.; Cortez-Álvarez, C.R.; Bonnet-Lemus, R.d.M.; Ramírez-Herrera, M.A. Curcumin Decreases Hippocampal Neurodegeneration and Nitro-Oxidative Damage to Plasma Proteins and Lipids Caused by Short-Term Exposure to Ozone. Molecules 2021, 26, 4075. [Google Scholar] [CrossRef]
- Dorado-Martinez, C.; Paredes-Carbajal, C.; Mascher, D.; Borgonio-Perez, G.; Rivas-Arancibia, S. Effects of different ozone doses on memory, motor activity and lipid peroxidation levels, in rats. Int. J. Neurosci. 2001, 108, 149–161. [Google Scholar] [CrossRef]
- Dai, C.; Xiao, X.; Zhang, Y.; Xiang, B.; Hoyer, D.; Shen, J.; Velkov, T.; Tang, S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect. Dis. 2020, 6, 715–724. [Google Scholar] [CrossRef]
- El-Bahr, S.M. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1. Phytother. Res. PTR 2015, 29, 134–140. [Google Scholar] [CrossRef]
- Giergiel, M.; Lopucki, M.; Stachowicz, N.; Kankofer, M. The influence of age and gender on antioxidant enzyme activities in humans and laboratory animals. Aging Clin. Exp. Res. 2012, 24, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Cao, X.; Hu, X.; Li, S.; Wang, J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol. Toxicol. 2020, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Kaplán, P.; Tatarková, Z.; Lichardusová, L.; Kmeťová Sivoňová, M.; Tomašcová, A.; Račay, P.; Lehotský, J. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol. Res. 2019, 68, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T.; Samini, F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharm. 2017, 87, 223–229. [Google Scholar] [CrossRef]
- Bahadır, A.; Ceyhan, A.; Öz Gergin, Ö.; Yalçın, B.; Ülger, M.; Özyazgan, T.M.; Yay, A. Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatol. J. Cardiol. 2018, 19, 213–221. [Google Scholar] [CrossRef]
- Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef]
- Nery-Flores, S.D.; Ramírez-Vázquez, J.J.; Mendoza-Magaña, M.L.; Ramírez-Herrera, M.A.; Cortez-Álvarez, C.R.; Romero-Prado, M. Experimental exposure to ozone induces activation and translocation of NFkB and is reverted by curcumin. Toxicol. Lett. 2016, 259, S75. [Google Scholar] [CrossRef]
- Ulasov, A.V.; Rosenkranz, A.A.; Georgiev, G.P.; Sobolev, A.S. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022, 291, 120111. [Google Scholar] [CrossRef]
- Fu, J.; Shi, Q.; Song, X.; Xia, X.; Su, C.; Liu, Z.; Song, E.; Song, Y. Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IκB/NF-κB signaling. Environ. Toxicol. Pharmacol. 2016, 41, 241–250. [Google Scholar] [CrossRef]
- Jobin, C.; Bradham, C.A.; Russo, M.P.; Juma, B.; Narula, A.S.; Brenner, D.A.; Sartor, R.B. Curcumin Blocks Cytokine-Mediated NF-κB Activation and Proinflammatory Gene Expression by Inhibiting Inhibitory Factor I-κB Kinase Activity. J. Immunol. 1999, 163, 3474–3483. [Google Scholar]
- Shin, J.W.; Chun, K.S.; Kim, D.H.; Kim, S.J.; Kim, S.H.; Cho, N.C.; Na, H.K.; Surh, Y.J. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem. Pharmacol. 2020, 173, 113820. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Campos, C.; Lara-Padilla, E.; Bobadilla-Lugo, R.A.; Kross, R.D.; Villanueva, C. Effects of Exercise on Oxidative Stress in Rats Induced by Ozone. Sci. World J. 2012, 2012, 135921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenbrink, G.; Hakenhaar, F.S.; Salomon, T.B.; Petrucci, A.P.; Sandri, M.R.; Benfato, M.S. Antioxidant enzymes activities and protein damage in rat brain of both sexes. Exp. Gerontol. 2006, 41, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Sankar, P.; Telang, A.G.; Kalaivanan, R.; Karunakaran, V.; Suresh, S.; Kesavan, M. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicol. Ind. Health 2016, 32, 410–421. [Google Scholar] [CrossRef]
- Santana-Martínez, R.A.; Silva-Islas, C.A. The Therapeutic Effect of Curcumin in Quinolinic Acid-Induced Neurotoxicity in Rats is Associated with BDNF, ERK1/2, Nrf2, and Antioxidant Enzymes. Antioxidants 2019, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, J.; Dahmen, U. Computational Modeling of Oxidative Stress in Fatty Livers Elucidates the Underlying Mechanism of the Increased Susceptibility to Ischemia/Reperfusion Injury. Comput. Struct. Biotechnol. J. 2018, 16, 511–522. [Google Scholar] [CrossRef]
- Guerrero-Hue, M.; García-Caballero, C.; Palomino-Antolín, A.; Rubio-Navarro, A.; Vázquez-Carballo, C.; Herencia, C.; Martín-Sanchez, D.; Farré-Alins, V.; Egea, J.; Cannata, P.; et al. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 8961–8975. [Google Scholar] [CrossRef]
- Dkhar, P.; Sharma, R. Attenuation of age-related increase of protein carbonylation in the liver of mice by melatonin and curcumin. Mol. Cell. Biochem. 2013, 380, 153–160. [Google Scholar] [CrossRef]
- Deng, H.; Wan, M.; Li, H.; Chen, Q.; Li, R.; Liang, B.; Zhu, H. Curcumin protection against ultraviolet-induced photo-damage in Hacat cells by regulating nuclear factor erythroid 2-related factor 2. Bioengineered 2021, 12, 9993–10006. [Google Scholar] [CrossRef]
- Nery-Flores, S.D.; Ramirez-Herrera, M.A.; Mendoza-Magana, M.L.; Romero-Prado, M.M.J.; Ramirez-Vazquez, J.J.; Banuelos-Pineda, J.; Espinoza-Gutierrez, H.A.; Ramirez-Mendoza, A.A.; Tostado, M.C. Dietary Curcumin Prevented Astrocytosis, Microgliosis, and Apoptosis Caused by Acute and Chronic Exposure to Ozone. Molecules 2019, 24, 2839. [Google Scholar] [CrossRef] [Green Version]
- Barragán-Mejía, M.G.; Castilla-Serna, L.; Calderón-Guzmán, D.; Hernández-Islas, J.L.; Labra-Ruiz, N.A.; Rodríguez-Pérez, R.A.; Angel, D.S. Effect of nutritional status and ozone exposure on rat brain serotonin. Arch. Med. Res. 2002, 33, 15–19. [Google Scholar] [CrossRef]
- Goldring, J.P.D. Measuring Protein Concentration with Absorbance, Lowry, Bradford Coomassie Blue, or the Smith Bicinchoninic Acid Assay Before Electrophoresis. Methods Mol. Biol. 2019, 1855, 31–39. [Google Scholar] [CrossRef] [PubMed]
Acute Phase | |
---|---|
AO | Acute O3 (exposure to 0.7 ppm of O3 for 4 h for 15 days). |
AI | Acute intact (exposed to O3 free air for 4 h and without CUR supplementation for 15 days). |
AC | Acute CUR (diet supplemented with CUR and exposed to O3-free air for 15 days). |
AP | Acute preventive (diet supplemented with CUR provided 7 days prior to exposure to O3 for 15 days and continued CUR supplementation). |
AT | Acute therapeutic (exposure to O3 7 days prior to the administration of the diet supplemented with CUR for 15 days and continued exposure to O3 until day 15). |
Chronic phase | |
CO | Chronic O3 (exposure to 0.7 ppm of O3 for 4 h for 60 days). |
CI | Chronic intact (exposure to O3-free air for 4 h and without CUR supplementation for 60 days). |
CC | Chronic CUR (exposure to O3-free air for 4 h with diet supplemented with CUR administered for 60 days). |
CP | Chronic preventive (diet supplemented with CUR provided 7 days prior to exposure to O3 for 60 days; CUR-supplemented feeding continued until day 60). |
CT | Chronic therapeutic (exposure to O3 for 7 days prior to the administration of the diet supplemented with CUR for 60 days; exposure to O3 continued until day 60). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Mendoza, A.A.; Ramírez-Herrera, M.A.; Cortez-Álvarez, C.R.; Nery-Flores, S.D.; Tejeda-Martínez, A.R.; Romero-Prado, M.M.d.J.; Mendoza-Magaña, M.L. Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone. Molecules 2022, 27, 4531. https://doi.org/10.3390/molecules27144531
Ramírez-Mendoza AA, Ramírez-Herrera MA, Cortez-Álvarez CR, Nery-Flores SD, Tejeda-Martínez AR, Romero-Prado MMdJ, Mendoza-Magaña ML. Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone. Molecules. 2022; 27(14):4531. https://doi.org/10.3390/molecules27144531
Chicago/Turabian StyleRamírez-Mendoza, Abraham Alberto, Mario Alberto Ramírez-Herrera, Cesar Ricardo Cortez-Álvarez, Sendar Daniel Nery-Flores, Aldo Rafael Tejeda-Martínez, Marina María de Jesús Romero-Prado, and María Luisa Mendoza-Magaña. 2022. "Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone" Molecules 27, no. 14: 4531. https://doi.org/10.3390/molecules27144531
APA StyleRamírez-Mendoza, A. A., Ramírez-Herrera, M. A., Cortez-Álvarez, C. R., Nery-Flores, S. D., Tejeda-Martínez, A. R., Romero-Prado, M. M. d. J., & Mendoza-Magaña, M. L. (2022). Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone. Molecules, 27(14), 4531. https://doi.org/10.3390/molecules27144531