Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics
Abstract
:1. Introduction
2. Results
2.1. Crystal Structure
2.2. Thermal Property and Ferroelastic Twin Domain
2.3. 1H NMR Chemical Shifts
2.4. 13C NMR Chemical Shifts
2.5. 1H and 13C Spin-Lattice Relaxation Times
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rao, C.N.R.; Cheetham, A.K.; Thirumurugan, A. Hybrid inorganic-organic materials: A new family in condensed matter physics. J. Phys. Condens. Matter. 2008, 20, 83202. [Google Scholar] [CrossRef]
- Cheng, Z.; Lin, J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. Cryst. Eng. Com. 2010, 12, 2646–2662. [Google Scholar] [CrossRef]
- Mostafa, M.F.; El-khiyami, S.S. Crystal structure and electric properties of the organic-inorganic hybrid: [(CH2)6(NH3)2]ZnCl4. J. Solid State Chem. 2014, 209, 82–88. [Google Scholar] [CrossRef]
- Chen, Q.; Marco, N.D.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, S.K.; Abdel-Rahman, A.S.; Kocher-Oberlehner, G.G.; Ionov, A.; Mozhchil, R. Structure, optical studies of 2D hybrid perovskite for photovoltaic applications. Acta Cryst. A 2017, 70, C1116. [Google Scholar] [CrossRef]
- Liu, Y.; Collins, L.; Proksch, R.; Kim, S.; Watson, B.R.; Doughty, B.; Calhoun, T.R.; Ahmadi, M.; Ievlev, A.V.; Jesse, S.; et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 2018, 17, 1013–1019. [Google Scholar] [CrossRef]
- Lee, J.; Lee, W.; Kang, K.; Lee, T.; Lee, S.K. Layer-by-Layer Structural Identification of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites by Solid-State NMR Spectroscopy. Chem. Mater. 2021, 33, 370–377. [Google Scholar] [CrossRef]
- Asaji, T.; Ito, Y.; Seliger, J.; Zagar, V.; Gradisek, A.; Apih, T. Phase transition and ring-puckering motion in a metal-organic perovskite [(CH2)3NH2][Zn(HCOO)3]. J. Phys. Chem. C 2012, 116, 12422. [Google Scholar] [CrossRef]
- Asaji, T.; Ashitomi, K. Phase transition and cationic motion in a metal-organic perovskite, dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3]. J. Phys. Chem. C 2013, 117, 10185. [Google Scholar] [CrossRef]
- Simenas, M.; Ciupa, A.; Maczka, M.; Poppl, A.; Banys, J. EPR study of structural phase transition in manganese-doped [(CH3)2NH2][Zn(HCOO)3] metal-organic framework. J. Phys. Chem. C 2015, 119, 24522. [Google Scholar] [CrossRef]
- Abhyankar, N.; Kweon, J.J.; Orio, M.; Bertaina, S.; Lee, M.; Choi, E.S.; Fu, R.; Dalal, N.S. Understanding ferroelectricity in the Pb-free perovskite-like metal-organic framework [(CH3)2NH2]Zn(HCOO)3: Dielectric, 2D NMR, and theoretical studies. J. Phys. Chem. C 2017, 121, 6314. [Google Scholar] [CrossRef]
- Simenas, M.; Balciunas, S.; Trzebiatowska, M.; Ptak, M.; Maczka, M.; Volkel, G.; Poppl, A.; Banys, J. Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate framework. J. Mater. Chem. C 2017, 5, 4526. [Google Scholar] [CrossRef]
- Simenas, M.; Balciunas, S.; Ciupa, A.; Vilciauskas, L.; Jablonskas, D.; Kinka, M.; Sieradzki, A.; Samulionis, V.; Maczka, M.; Banys, J. Elucidation of dipolar dynamics and the nature of structural phases in the [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite framework. J. Mater. Chem. C 2019, 7, 6779. [Google Scholar] [CrossRef]
- Simenas, M.; Ptak, M.; Khan, A.H.; Dagys, L.; Balevicius, V.; Bertmer, M.; Volkel, G.; Maczka, M.; Poppl, A.; Banys, J. Spectro scopic study of [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite containing different nitrogen isotopes. J. Phys. Chem. C 2018, 122, 10284. [Google Scholar] [CrossRef]
- Gonzalez-Carrero, S.; Galian, R.E.; Perez-Prieto, J. Organometa halide perovskites: Bulk low-dimension materials and nanoparticles. Part. Syst. Charact. 2015, 32, 709–720. [Google Scholar] [CrossRef]
- Mostafa, M.F.; Elkhiyami, S.S.; Alal, S.A. Discontinuous transition from insulator to semiconductor induced by phase change of the new organic-inorganic hybrid [(CH2)7(NH3)2]CoBr4. Mat. Chem. Phys. 2017, 199, 454–463. [Google Scholar] [CrossRef]
- Abdel-Aal, S.K. Synthesis, characterization, thermal, and electric properties of new diammonium hybrid perovskite [NH3-(CH2)7-NH3]CaCl2Br2. Solid State Ion. 2017, 303, 29–36. [Google Scholar] [CrossRef]
- Abdel-Adal, S.K.; Kocher-Oberlehner, G.; Ionov, A.; Mozhchil, R.N. Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2)n(NH3)]CuCl4, n = 2–9. Appl. Phys. A 2017, 123, 531. [Google Scholar] [CrossRef]
- Liu, W.; Xing, J.; Zhao, J.; Wen, X.; Wang, K.; Peixiang, L.; Xiong, Q. Giant two-dimensional absorption and its saturation in 2D organic-inorganic perovskite. Adv. Opt. Mater. 2017, 5, 1601045. [Google Scholar] [CrossRef]
- Mondal, P.; Abdel-Aal, S.K.; Das, D.; Manirul Islam, S.K. Catalytic activity of crystallographically characterized organic-inorganic hybrid containing 1,5-di-amino-pentane tetrachloro manganate with perovskite type structure. Cat. Let. 2017, 147, 2332–2339. [Google Scholar] [CrossRef]
- Elseman, M.; Shalan, A.E.; Sajid, S.; Rashad, M.M.; Hassan, A.M.; Li, M. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view. ACS Appl. Mater. Interfaces 2018, 10, 11699–11707. [Google Scholar] [CrossRef] [PubMed]
- Aramburu, J.A.; Garcia-Fernandez, P.; Mathiesen, N.R.; Garcia-Lastra, J.M.; Moreno, M. Changing the usual interpretation of the structure and ground state of Cu2+ layered perovskites. J. Phys. Chem. C 2018, 122, 5071–5082. [Google Scholar] [CrossRef] [Green Version]
- Pradeesh, K.; Yadav, G.S.; Singh, M.; Vijaya Prakash, G. Synthesis, structure and optical studies of inorganic-organic hybrid semiconductor, NH3(CH2)12NH3PbI4. Mater. Chem. Phys. 2010, 124, 44–47. [Google Scholar] [CrossRef]
- Saikumar, S.; Ahmad, J.J.; Baumberg, G.; Vijaya Prakash, G. Fabrication of excitonic luminescent inorganic-organic hybrid nano- and microcrystals. Scr. Mater. 2012, 67, 834–837. [Google Scholar] [CrossRef]
- Staskiewicz, B.; Czupinski, O.; Czapla, Z. On some spectroscopic properties of a layered 1,3-diammoniumpropylene tetrabromocadmate hybrid crystal. J. Mol. Struct. 2014, 1074, 723–731. [Google Scholar] [CrossRef]
- Ahmad, S.; Hanmandlu, C.; Kanaujia, P.K.; Vijaya Prakash, G. Direct deposition strategy for highly ordered inorganic organic perovskite thin films and their optoelectric applications. Opt. Mater. Express 2014, 4, 1313–1323. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, C.; Liu, X.; Han, S.; Zhang, J.; Sun, Z.; Khan, A.; Luo, J. (1,4-Butyldiammonium) CdBr4: A layered organic–inorganic hybrid perovskite with a visible-blind ultraviolet photoelectric response. Inorg. Chem. Front. 2018, 5, 2450–2455. [Google Scholar] [CrossRef]
- Czupinski, O.; Ingram, A.; Kostrzewa, M.; Przeslawski, J.; Czapla, Z. On the Structural phase transition in a perovskite-type diaminopropanetetrachlorocuprate(II) NH3(CH2)3NH3CuCl4 crystal. Acta Phys. Pol. A 2017, 131, 304–310. [Google Scholar] [CrossRef]
- Liang, D.; Lian, X.; Li, X.; Luo, B. Pb alloying enables efficient broadband emission of two dimensional [NH3(CH2)4NH3]CdBr4. J. Solid State Chem. 2021, 293, 121772. [Google Scholar] [CrossRef]
- Przeslawski, J.; Czapla, Z.; Crofton, M.; Dacko, S. On the “inverted” phase transitions in ferroic crystals containing propylenediammonium cations. Ferroelectrics 2018, 534, 220–227. [Google Scholar] [CrossRef]
- Svane, K.L.; Forse, A.C.; Grey, C.P.; Kieslich, G.; Cheetham, A.K.; Walsh, A.; Butler, A.K. How Strong Is the Hydrogen Bond in Hybrid Perovskites? J. Phys. Chem. Lett. 2017, 8, 6154–6159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, W.; Xiong, R.G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.R.; Kim, S.H. Physicochemical property investigations of perovskite-type layer crystals [NH3(CH2)nNH3]CdCl4 (n = 2, 3, and 4) as a function of length n of CH2. ACS Omega 2021, 6, 27568–27577. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Gratzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and Challenges of Perovskite Solar Cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Manna, L. What defines a halide perovskite? ACS Energy Lett. 2021, 6, 1803. [Google Scholar] [CrossRef] [Green Version]
- Kind, R.; Plesko, S.; Gunter, P.; Roos, J.; Fousek, J. Structural phase transitions in the perovskite-type layer compounds NH3(CH2)3NH3CdCl4, NH3(CH2)4NH3MnCl4, and NH3(CH2)5NH3CdCl4. Phys. Rev. B 1981, 23, 5301. [Google Scholar] [CrossRef]
- Garland, J.K.; Emerson, K.; Pressprich, M.R. Structures of four- and five carbon alkyldiammonium tetrachlorocuprate (II) and tetrabromocuprate (II) salts. Acta Cryst. C 1990, 46, 1603–1609. [Google Scholar] [CrossRef]
- Filloleau, N.; Zouari, R.; Bissey, J.-C.; Chanh, N.B.; Daoud, A. EPR study of the two-dimensional molecular composite [NH3(CH2)5NH3]CuCl4: Evidence for both spin diffusion and spin anisotropies. Appl. Magn. Reson. 1998, 14, 25–35. [Google Scholar] [CrossRef]
- von Kanel, H. Magnetic and optical properties of the layer type magnets (CH2)2(ND3)2MnCl4 and (CH2)n(NH3)2CuCl4, n = 2, 3, 5. Phys. B 1979, 96, 167–193. [Google Scholar] [CrossRef]
- Lim, A.R. Dynamics of NH3(CH2)2NH3 cation in perovskite layer crystal NH3(CH2)2NH3CuCl4 by M. Solid State Commun. 2020, 312, 113862. [Google Scholar] [CrossRef]
- Yoon, M.B.; Lee, W.J.; Lim, A.R. Thermal property and structural molecular dynamics of organic-inorganic hybrid perovskite 1,4-butane diammonium tetrachlorocuprate. RSC Adv. 2020, 10, 34800–34805. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.R. Structural characterization, thermal properties, and molecular motions near the phase transition in hybrid perovskite [(CH2)3(NH3)2]CuCl4 crystals:1H, 13C, and 14N nuclear magnetic resonance. Sci. Rep. 2020, 10, 20853. [Google Scholar] [CrossRef]
- Mostafa, M.F.; Hassen, A. Phase transition and electric properties of long chain Cd(II) layered perovskite. Phase Transit. 2006, 79, 305–321. [Google Scholar] [CrossRef]
- Khechoubi, M.; Bendani, A.; Chanh, N.B.; Courseille, C.; Duplessix, R.; Couzi, M. Thermal conformational changes in a bidimensional molecular composite material: A thermodynamic and crystallographic study of NH3-(CH2)4-NH3 CdCl4. J. Phys. Chem. Solids 1994, 55, 1277–1288. [Google Scholar] [CrossRef]
- Mostafa, M.F.; El-hakim, S.A. Structural phase transition and the dielectric permittivity of the model lipid bilayer [(CH2)12(NH3)2]CuCl4. Phase Transit. 2003, 76, 587–599. [Google Scholar] [CrossRef]
- Mostafa, M.F.; Youssef, A.A.A. Magnetic and electric studies of a new Cu(II) perovskite-like material. Z. Naturforsch. 2004, 59, 35–46. [Google Scholar] [CrossRef]
- Anbarasan, R.; Eniya, P.; Lakshmi, M.A.; Sundar, J.K. Structural, spectal, optical, thermal and quantum chemical investigations on ethylenediammonium tetrachloro zinc crystal for optoelectric appications. J. Mol. Struct. 2019, 1188, 165–172. [Google Scholar] [CrossRef]
- Herms, I.M.; Bretschneider, S.A.; Bergmann, V.W.; Li, D.; Klasen, A.; Mars, J.; Tremel, W.; Laquai, F.; Butt, H.-J.; Mezger, M.; et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J. Phys. Chem. C 2016, 120, 5724–5731. [Google Scholar] [CrossRef] [Green Version]
- Strelcov, E.; Dong, Q.; Li, T.; Chae, J.; Shao, Y.; Deng, Y.; Gruverman, A.; Huang, J.; Centrone, A. CH3NH3PbI3 perovskites: Ferroelasticity revealed. Sci. Adv. 2017, 3, e1602165. [Google Scholar] [CrossRef] [Green Version]
- Maczka, M.; Ptak, M.; Vasconcelos, D.L.M.; Giriunas, L.; Freire, P.T.C.; Bertmer, M.; Banys, J.; Simenas, M. NMR and raman scattering studies of temperature- and pressure-driven phase transitions in CH3NH2NH2PbCl3 perovskite. J. Phys. Chem. C 2020, 124, 26999. [Google Scholar] [CrossRef]
- Abragam, A. The Principles of Nuclear Magnetism; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Harris, R.K. Nuclear Magnetic Resonance Spectroscopy; Pitman Pub.: London, UK, 1983. [Google Scholar]
- Koenig, J.L. Spectroscopy of Polymers; Elsevier: New York, NY, USA, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, A.R.; Park, S.H. Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics. Molecules 2022, 27, 4546. https://doi.org/10.3390/molecules27144546
Lim AR, Park SH. Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics. Molecules. 2022; 27(14):4546. https://doi.org/10.3390/molecules27144546
Chicago/Turabian StyleLim, Ae Ran, and Sang Hyeon Park. 2022. "Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics" Molecules 27, no. 14: 4546. https://doi.org/10.3390/molecules27144546
APA StyleLim, A. R., & Park, S. H. (2022). Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics. Molecules, 27(14), 4546. https://doi.org/10.3390/molecules27144546