Co-Removal Effect and Mechanism of Cr(VI) and Cd(II) by Biochar-Supported Sulfide-Modified Nanoscale Zero-Valent Iron in a Binary System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BC, BC-SnZVI
2.3. Batch Adsorption
2.3.1. Screening of Potential Adsorbents
2.3.2. Adsorption in Single and Binary Systems
2.3.3. Effects of the Concentrations of Heavy Metals
2.3.4. Effects of Coexisting Heavy Metals
2.4. Characterization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of Materials
3.1.1. Optimized Synthesis of Materials
3.1.2. Characterization of BC and BC-SnZVI
3.2. Isothermal Adsorption in Single and Binary Systems
3.3. Effects of Heavy Metal Concentration on Adsorption
3.4. Effects of Other Coexisting Metal Ions
3.5. Comparison with Other Adsorbents
3.6. Mechanisms of Cd(II)-Cr(VI) Co-Removal
3.6.1. Effects of Functional Groups
3.6.2. XPS Analysis
3.6.3. Simulated Mechanisms
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Yang, P.; Chen, C.; Wu, Q.; Wu, Z.; Cai, D. Simultaneously removal of Cr(VI) and Cd(II) from water using a flower-like primary battery nanosystem. Sci. Total Environ. 2021, 765, 142735. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Jaiswal, M.; Sankararamakrishnan, N. Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan. Carbohydr. Polym. 2012, 88, 670–675. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Ahmad, A.; Vijaya Bhaskar Reddy, A. Toxicology and environmental application of carbon nanocomposite. In Environmental Remediation Through Carbon Based Nano Composites; Jawaid, M., Ahmad, A., Ismail, N., Rafatullah, M., Eds.; Springer Nature Singapore: Singapore, 2021; pp. 1–18. [Google Scholar]
- Huang, R.Y.; He, L.; Zhang, T.; Li, D.Q.; Tang, P.G.; Feng, Y.J. Novel carbon paper@magnesium silicate composite porous films: Design, fabrication, and adsorption behavior for heavy metal ions in aqueous solution. ACS Appl. Mater. Int. 2018, 10, 22776–22785. [Google Scholar] [CrossRef]
- Hemati Matin, N.; Jalali, M.; Buss, W. Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. Chemosphere 2020, 241, 124932. [Google Scholar] [CrossRef] [PubMed]
- He, E.; Yang, Y.; Xu, Z.; Qiu, H.; Yang, F.; Peijnenburg, W.; Zhang, W.; Qiu, R.; Wang, S. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Sci. Total Environ. 2019, 673, 245–253. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Reddy, N.; Ramamurthy, S.S. Cellphone-aided attomolar zinc ion detection using silkworm protein-based nanointerface engineering in a plasmon-coupled dequenched emission platform. ACS Sustain. Chem. Eng. 2021, 9, 14959–14974. [Google Scholar] [CrossRef]
- Duan, H.H.; Wang, D.S.; Li, Y.D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef]
- Chen, T.W.; Luo, L.; Deng, S.H.; Shi, G.Z.; Zhang, S.R.; Zhang, Y.Z.; Deng, O.P.; Wang, L.L.; Zhang, J.; Wei, L.Y. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresour. Technol. 2018, 267, 431–437. [Google Scholar] [CrossRef]
- Chu, G.; Zhao, J.; Huang, Y.; Zhou, D.D.; Liu, Y.; Wu, M.; Peng, H.B.; Zhao, Q.; Pan, B.; Steinberg, C.E.W. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ. Pollut. 2018, 240, 1–9. [Google Scholar] [CrossRef]
- Zhao, L.L.; Yang, F.; Jiang, Q.; Zhu, M.R.; Jiang, Z.; Tang, Y.; Zhang, Y. Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal. Environ. Sci. Pollut. Res. 2018, 25, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Hou, K.; Qiao, W.; Cheng, Y.; Zhang, L.; Wang, B.; Li, L.; Wang, Y.; Ning, Q.; Zeng, G. Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate. Chem. Eng. J. 2019, 359, 1046–1055. [Google Scholar] [CrossRef]
- Wei, X.; Yin, H.; Peng, H.; Guo, Z.; Lu, G.; Dang, Z. Sulfidation enhanced reduction of polybrominated diphenyl ether and Pb(II) combined pollutants by nanoscale zerovalent iron: Competitive reaction between pollutants and electronic transmission mechanism. Chem. Eng. J. 2020, 395, 125085. [Google Scholar] [CrossRef]
- Deng, M.; Wang, X.; Li, Y.; Wang, F.; Jiang, Z.; Liu, Y.; Gu, Z.; Xia, S.; Zhao, J. Reduction and immobilization of Cr(VI) in aqueous solutions by blast furnace slag supported sulfidized nanoscale zerovalent iron. Sci. Total Environ. 2020, 743, 140722. [Google Scholar] [CrossRef]
- Xu, W.; Hu, X.; Lou, Y.; Jiang, X.; Shi, K.; Tong, Y.; Xu, X.; Shen, C.; Hu, B.; Lou, L. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. Environ. Res. 2020, 187, 109662. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhou, X.; Zhou, J.; Liu, Y.; Li, Y.; Yang, K.; Lou, Z.; Baig, S.A.; Wu, D.; Xu, X. Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions. Appl. Surf. Sci. 2018, 442, 114–123. [Google Scholar] [CrossRef]
- Qu, J.; Liu, Y.; Cheng, L.; Jiang, Z.; Zhang, G.; Deng, F.; Wang, L.; Han, W.; Zhang, Y. Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(II) scavenging from water: Characterization, kinetics, isotherms and mechanisms. J. Hazard. Mater. 2021, 403, 123607. [Google Scholar] [CrossRef]
- Tasharrofi, S.; Rouzitalab, Z.; Maklavany, D.M.; Esmaeili, A.; Rabieezadeh, M.; Askarieh, M.; Rashidi, A.; Taghdisian, H. Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs. Sci. Total Environ. 2020, 736, 139570. [Google Scholar] [CrossRef]
- Wang, H.; Cai, J.; Liao, Z.; Jawad, A.; Ifthikar, J.; Chen, Z.; Chen, Z. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality. Bioresour. Technol. 2020, 311, 123553. [Google Scholar] [CrossRef]
- Anush, S.M.; Chandan, H.R.; Gayathri, B.H.; Asma; Manju, N.; Vishalakshi, B.; Kalluraya, B. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu(II) and Cr(VI) from waste water. Int. J. Biol. Macromol. 2020, 164, 4391–4402. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Amano, Y.; Machida, M. Preparation of bamboo-based oxidized biochar for simultaneous removal of Cd(II) and Cr(VI) from aqueous solutions. Desalin. Water Treat. 2019, 168, 269–281. [Google Scholar] [CrossRef]
- Ahmad, R.; Hasan, I.; Mittal, A. Adsorption of Cr(VI) and Cd(II) on chitosan grafted polyaniline-OMMT nanocomposite: Isotherms, kinetics and thermodynamics studies. Desalin. Water Treat. 2017, 58, 144–153. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Sun, A.; Tong, S.; Su, G.; Jiang, X.; Li, J.; Han, W.; Sun, X.; Wang, L.; et al. Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods. Sci. Total Environ. 2019, 694, 133701. [Google Scholar] [CrossRef]
- Sathish, R.S.; Raju, N.S.R.; Raju, G.S.; Rao, G.N.; Kumar, K.A.; Janardhana, C. Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Sep. Sci. Technol. 2007, 42, 769–788. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, H.; Li, L.; Tian, R.; Chen, J.; Ning, Q.; Wang, B.; Tang, L.; Zeng, G. Influence of feedstocks and modification methods on biochar’s capacity to activate hydrogen peroxide for tetracycline removal. Bioresour. Technol. 2019, 291, 121840. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zheng, H.; Luo, Y.; Deng, X.; Herbert, S.; Xing, B.S. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollut. 2013, 174, 289–296. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Gao, X.; Xu, C. Insights on the effects of pH and Fe(II) regeneration during the chromate sequestration by sulfidated zero-valent iron. Chem. Eng. J. 2019, 378, 122115. [Google Scholar] [CrossRef]
- Lyu, H.; Tang, J.; Huang, Y.; Gai, L.; Zeng, E.Y.; Liber, K.; Gong, Y. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J. 2017, 322, 516–524. [Google Scholar] [CrossRef]
- Yen, M.Y.; Teng, C.C.; Hsiao, M.C.; Liu, P.I.; Chuang, W.P.; Ma, C.C.M.; Hsieh, C.K.; Tsai, M.C.; Tsai, C.H. Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 12880–12888. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Yao, Y.; Inyang, M.D. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere 2013, 92, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.Y.; Gai, L.S.; Tang, J.C.; Fu, J.; Wang, Q.L.; Zeng, E.Y. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci. Total Environ. 2017, 595, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Nozari, M.; Golkari, I.; Rostami, N.; Shiri, M.A. Adsorption of mercury(II) from aqueous solutions using dried Scrophularia striata stems: Adsorption and kinetic studies. Desalin. Water Treat. 2020, 203, 279–291. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Su, Y.M.; Zhou, X.F.; Dai, C.M.; Keller, A.A. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration. J. Hazard. Mater. 2013, 263, 685–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.Q.; Guo, Q.; Pei, F.K.; Chen, L.Y.; Rehman, S.; Liang, S.L.; Dang, Z.; Wu, P.X. The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II). Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125356. [Google Scholar] [CrossRef]
- Aiyesanmi, A.F.; Adebayo, M.A.; Arowojobe, Y. Biosorption of lead and cadmium from aqueous solution in single and binary systems using avocado pear exocarp: Effects of competing ions. Anal. Lett. 2020, 53, 2868–2885. [Google Scholar] [CrossRef]
- Silva-Silva, M.J.; Mijangos-Ricardez, O.F.; Vázquez-Hipólito, V.; Martinez-Vargas, S.; López-Luna, J. Single and mixed adsorption of Cd(II) and Cr(VI) onto citrate-coated magnetite nanoparticles. Desalin. Water Treat. 2014, 57, 4008–4017. [Google Scholar] [CrossRef]
- Zheng, L.W.; Gao, Y.C.; Du, J.H.; Zhang, W.; Huang, Y.J.; Zhao, Q.Q.; Duan, L.C.; Liu, Y.J.; Naidu, R.; Pan, X.L. Single and binary adsorption behaviour and mechanisms of Cd2+, Cu2+ and Ni2+ onto modified biochar in aqueous solutions. Processes 2021, 9, 1829. [Google Scholar] [CrossRef]
- Gao, C.; Gao, L.; Duan, P.; Wu, H.; Li, M. Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: A theoretical non-linear combined toxicity assessment method. Ecotoxicol. Environ. Saf. 2020, 187, 109809. [Google Scholar] [CrossRef]
- Li, R.; Liang, W.; Li, M.; Jiang, S.; Huang, H.; Zhang, Z.; Wang, J.J.; Awasthi, M.K. Removal of Cd(II) and Cr(VI) ions by highly cross-linked Thiocarbohydrazide-chitosan gel. Int. J. Biol. Macromol. 2017, 104, 1072–1081. [Google Scholar] [CrossRef]
- Lei, C.; Wang, C.W.; Chen, W.Q.; He, M.H.; Huang, B.B. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. Sci. Total Environ. 2020, 733, 139316. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Feng, H.; Tang, L.; Dong, H.; Wang, J.; Yu, J.; Feng, C.; Liu, Y.; Luo, T.; Ni, T. Removal of Sb(III) by sulfidated nanoscale zerovalent iron: The mechanism and impact of environmental conditions. Sci. Total Environ. 2020, 736, 139629. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.H.; Qian, W.; Zhang, Z.W.; Jin, J.C.; Chen, Z.L.; Guo, P.R.; Dong, F.X.; Yan, L.; Kong, L.J.; Chu, W. Removals of Cr(VI) and Cd(II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: Coexisting effect, products and mechanism. Chem. Eng. J. 2020, 397, 125382. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.; Ren, B.; Li, T. Simultaneous adsorption and degradation of Cr(VI) and Cd(II) ions from aqueous solution by silica-coated Fe(0) nanoparticles. J. Anal. Methods Chem. 2013, 2013, 649503. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Feng, Y.; Zhu, C.; Liu, F.; Li, A. Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites. J. Hazard. Mater. 2020, 388, 121776. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Liu, F.Q.; Zhang, Y.H.; Wei, M.M.; Zhang, X.P.; Ling, C.; Li, A.M. Nitrogen-doped chitosan-Fe(III) composite as a dual-functional material for synergistically enhanced co-removal of Cu(II) and Cr(VI) based on adsorption and redox. Chem. Eng. J. 2016, 306, 579–587. [Google Scholar] [CrossRef]
- Jain, M.; Garg, V.K.; Kadirvelu, K.; Sillanpaa, M. Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons. Int. J. Environ. Sci. Technol. 2016, 13, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Hong, M.; Li, H.; Ye, Z.; Gong, H.; Zhang, J.; Huang, Q.; Tan, Z. Contributions and mechanisms of components in modified biochar to adsorb cadmium in aqueous solution. Sci. Total Environ. 2020, 733, 139320. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Cheng, K.; Li, J.; Tsang, D.C.W. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour. Technol. 2018, 265, 490–497. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, G.C.; Zheng, H.; Li, F.M.; Ngo, H.H.; Guo, W.S.; Liu, C.; Chen, L.; Xing, B.S. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour. Technol. 2015, 177, 308–317. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.S.; Li, H.P.; Li, S.S.; Cheng, K.; Li, J.S.; Tsang, D.C.W. Corn straw-derived biochar impregnated with alpha-FeOOH nanorods for highly effective copper removal. Chem. Eng. J. 2018, 348, 191–201. [Google Scholar] [CrossRef]
- Qiu, B.; Guo, J.; Zhang, X.; Sun, D.; Gu, H.; Wang, Q.; Wang, H.; Wang, X.; Zhang, X.; Weeks, B.L.; et al. Polyethylenimine facilitated ethyl cellulose for hexavalent chromium removal with a wide pH range. ACS Appl. Mater. Interfaces 2014, 6, 19816–19824. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.W.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200, 673–680. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Y.; Li, M.; Hong, Y.J. A new carbon/ferrous sulfide/iron composite prepared by an in situ carbonization reduction method from Hemp (Cannabis sativa L.) stems and Its Cr(VI) removal ability. ACS Sustain. Chem. Eng. 2014, 2, 1270–1279. [Google Scholar] [CrossRef]
- Song, L.; Liu, F.Q.; Zhu, C.Q.; Li, A.M. Facile one-step fabrication of carboxymethyl cellulose based hydrogel for highly efficient removal of Cr(VI) under mild acidic condition. Chem. Eng. J. 2019, 369, 641–651. [Google Scholar] [CrossRef]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling. Environ. Sci. Pollut. Res. 2013, 20, 6210–6221. [Google Scholar] [CrossRef]
- Manasi; Rajesh, V.; Rajesh, N. An indigenous Halomonas BVR1 strain immobilized in crosslinked chitosan for adsorption of lead and cadmium. Int. J. Biol. Macromol. 2015, 79, 300–308. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.G. Adsorption characteristics of hexavalent chromium on HCB/TiO2. Appl. Surf. Sci. 2014, 316, 649–656. [Google Scholar] [CrossRef]
- Karthik, R.; Meenakshi, S. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem. Eng. J. 2015, 263, 168–177. [Google Scholar] [CrossRef]
- Ni, C.Y.; Liu, S.; Cui, L.J.; Han, Z.; Wang, L.; Chen, R.F.; Liu, H. Adsorption performance of Cr(VI) onto Al-free and Al-substituted ferrihydrites. RSC Adv. 2016, 6, 66412–66419. [Google Scholar] [CrossRef]
- Ferrero, F.; Tonetti, C.; Periolatto, M. Adsorption of chromate and cupric ions onto chitosan-coated cotton gauze. Carbohydr. Polym. 2014, 110, 367–373. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Cao, X.; Li, T.; Cui, X.; Cui, Z. Co-Removal Effect and Mechanism of Cr(VI) and Cd(II) by Biochar-Supported Sulfide-Modified Nanoscale Zero-Valent Iron in a Binary System. Molecules 2022, 27, 4742. https://doi.org/10.3390/molecules27154742
Zhao R, Cao X, Li T, Cui X, Cui Z. Co-Removal Effect and Mechanism of Cr(VI) and Cd(II) by Biochar-Supported Sulfide-Modified Nanoscale Zero-Valent Iron in a Binary System. Molecules. 2022; 27(15):4742. https://doi.org/10.3390/molecules27154742
Chicago/Turabian StyleZhao, Rui, Xiufeng Cao, Tao Li, Xiaowei Cui, and Zhaojie Cui. 2022. "Co-Removal Effect and Mechanism of Cr(VI) and Cd(II) by Biochar-Supported Sulfide-Modified Nanoscale Zero-Valent Iron in a Binary System" Molecules 27, no. 15: 4742. https://doi.org/10.3390/molecules27154742
APA StyleZhao, R., Cao, X., Li, T., Cui, X., & Cui, Z. (2022). Co-Removal Effect and Mechanism of Cr(VI) and Cd(II) by Biochar-Supported Sulfide-Modified Nanoscale Zero-Valent Iron in a Binary System. Molecules, 27(15), 4742. https://doi.org/10.3390/molecules27154742