Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa L.) By-Products for Salmonid Feed Applications
Abstract
:1. Introduction
2. Results
2.1. Moisture, Ash, Carbohydrate, and Protein Content
2.2. Extraction of Protein Isolates (PIs) and Purity
2.3. Amino Acid (AA) Analysis
2.4. SDS-PAGE Gel Electrophoresis
2.5. FT-IR Spectral Analysis of Biomass and Protein Isolates (PIs)
2.6. Two-Phase In Vitro Gastric/Pancreatic Protein Digestibility (IVPD)
2.7. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
2.8. Oxygen Radical Absorbance Capacities (ORAC) Assay
2.9. Total Phenolic (TP) Content
3. Discussion
4. Materials and Methods
4.1. Research Materials
4.2. Moisture, Ash, and Carbohydrate Content
4.3. Crude Protein Content Determined by Nitrogen Analysis
4.4. Extraction of Protein Isolates (PIs)
4.5. Amino Acid Analysis
4.6. SDS-PAGE Gel Electrophoresis
4.7. Two-Phase In Vitro Gastric/Pancreatic Protein Digestibility (IVPD)
4.8. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
4.9. Oxygen Radical Absorbance Capacity (ORAC) Assay
4.10. Total Phenolic (TP) Content
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The contribution of fisheries and aquaculture to the global supply. Food Secur. 2022, 14, 805–827. [Google Scholar] [CrossRef]
- Pradeepkiran, J.A. Aquaculture role in global food security with nutritional value: A review. Transl. Anim. Sci. 2019, 3, 903–910. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Andreev, K.; Dupre, M.E. Major trends in population growth around the world. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef]
- Kobayshi, M.; Msangi, S.; Batka, M.; Vannccini, S.; Dey, M.D.; Anderson, J.L. Fish to 2030: The role and opportunity for aquaculture. Aquac. Econ. Manag. 2015, 19, 282–300. [Google Scholar] [CrossRef] [Green Version]
- Cottrell, R.S.; Blanchard, J.L.; Halpern, B.S.; Metian, M.; Froehlich, H.E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 2020, 1, 302–308. [Google Scholar] [CrossRef]
- Hua, K.H.; Cobcroft, J.M.; Cole, A.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vocko, M.J.; Zeng, C.; Zenger, K.; Strugnell, J.M. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–319. [Google Scholar] [CrossRef] [Green Version]
- Bandara, T. Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud. 2018, 6, 3087–3094. [Google Scholar]
- Noakes, D.J. Oceans of opportunity: A review of Canadian aquaculture. Mar. Econ. Manag. 2018, 1, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Foroutani, M.B.; Parrish, C.C.; Wells, J.; Taylor, R.G.; Rise, M.L.; Shahidi, F. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition. PLoS ONE 2018, 13, e0198538. [Google Scholar]
- House, J.D.; Neuffld, J.; Leson, G. Evaluating the quality of protein from hemp (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Porto, C.D.; Decorti, D.; Tubaro, F. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind. Crops Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- Webster, C.D.; Thompson, K.R.; Morgan, A.M.; Grisby, E.J.; Gannam, A.L. Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops × M. saxatilis). Aquaculture 2000, 188, 299–309. [Google Scholar] [CrossRef]
- Lunger, A.N.; McLean, E.; Craig, S.R. The effects of organic protein supplementation upon growth, feed conversion and texture quality parameters of juvenile cobia (Rachycentron canadum). Aquaculture 2007, 264, 342–352. [Google Scholar] [CrossRef]
- Maly, O.; Mares, J.; Palisek, O.; Sorf, M.; Postulkova, E. Use of by-products from hemp processing in the nutrition of common carp (Cyprinus carpio L.). In Proceedings of the MendelNet Conference 2018, Brno, Czech Republic, 7–8 November 2018; pp. 165–170. [Google Scholar]
- Saoud, P.; Babikian, J.; Nasser, N.; Monzer, S. Effect of cannabis oil on growth performance, haematology and metabolism of Nile Tilapia Oreochromis niloticus. Aquac. Res. 2018, 49, 809–815. [Google Scholar] [CrossRef]
- Banskota, A.H.; Jones, A.; Hui, J.P.M.; Stefanova, R. Triacylglycerols and other lipids from hemp by-products. Molecules 2022, 27, 2339. [Google Scholar] [CrossRef]
- Gosukonda, V.; Singh, H.; Gosukonda, R. Comparative analysis of Nitrogen-to-Protein conversion factors for determining net protein content in six superfoods. J. Microbiol. Biotech. Food Sci. 2020, 9, 856–860. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Boogers, I.; Plugge, W.; Stokkermans, Y.Q.; Duchateau, A.L.L. Ultra-performance liquid chromatographic analysis of amino acids in protein hydrolysates using an automated pre-column derivatisation method. J. Chromatogr. A 2008, 1189, 406–409. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.L. Processing, nutrition, and functionality of hempseed protein: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) growth in a mountain environment of Italian Alps. Front. Plant Sci. 2019, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Edamatsu, R.; Mori, A.; Fujita, Y.; Yasuhara, T.; Yoshida, T.; Okuda, T. Effects of the interaction of tannins with co-exisating substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-picryhydrazyl radical. Chem. Pharm. Bull. 1989, 37, 2016–2021. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Z.; Shen, J.; Silva, S.; Dennis, D.A.; Barrow, C.J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murry, B.; Dheljazkov, V.D. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Lupescu, M. Industrial Hemp Production Tread and Regulation; GAIN Report Number: CA19030; Global Agriculture Information Network, USDA Foreign Agriculture Service: Ottawa, ON, Canada, 2019.
- Shen, P.; Gao, Z.; Xu, M.; Ohm, J.-B.; Rao, J.; Chen, B. The impact of hempseed dehulling on chemical composition, structure properties and aromatic profile of hemp protein isolate. Food Hydrocoll. 2020, 106, 105889. [Google Scholar] [CrossRef]
- Potin, F.; Lubbers, S.; Husson, F.; Saurel, R. Hemp (Cannabis sativa L.) protein extraction conditions after extraction yield and protein quality. J. Food Sci. 2019, 84, 3682–3690. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Dizdar, M.; Pojić, M.; Krstonosić, V. Emulsifying properties of hemp proteins: Effect of isolation technique. Food Hydrocoll. 2019, 89, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Mamone, G.; Picariello, G.; Ramondo, A.; Nicolai, M.A. Production, digestibility and allergenicity of hemp (Cannabis sativa L.) protein isolates. Food Res. Int. 2019, 115, 562–571. [Google Scholar] [CrossRef]
- Wang, X.-S.; Tang, C.-H.; Yang, X.-Q.; Gao, W.-R. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 2008, 107, 11–18. [Google Scholar] [CrossRef]
- Tang, C.-H.; Ten, Z.; Wang, X.-S.; Yang, X.-Q. Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. J. Agric. Food Chem. 2006, 54, 8945–8950. [Google Scholar] [CrossRef]
- Kim, J.-J.; Lee, M.-Y. Isolation and characterization of edestin from Cheungsam hempseed. J. Appl. Biol. Chem. 2011, 54, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Yegani, M.; Swift, M.L.; Zijlstra, R.T.; Korver, D.R. Prediction of energetic value of wheat and triticale in broiler chicks: A chick bioassay and an in vitro digestibility technique. Anim. Feed Sci. Technol. 2013, 183, 40–50. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Patelakis, S.J.J.; Whitney-Lalonde, C.G.; Garrison, L.L.; Wall, C.L.; MacQuarrie, S.P. Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds. J. Appl. Phycol. 2020, 32, 299–318. [Google Scholar] [CrossRef]
- Hajen, W.E.; Higgs, D.A.; Beames, R.M.; Dosanjh, B.S. Digestibility of various feedstuffs by post-juvenile Chinook salmon (Oncorhynchus tshawytscha) in seawater. 2. Measurement of digestibility. Aquaculture 1992, 112, 333–348. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Dong, F.M.; Rathbone, C.K.; Hardy, R.W. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 1998, 159, 177–202. [Google Scholar] [CrossRef]
- Glencross, B.D.; Carter, C.G.; Duijster, N.; Evans, D.R.; Dods, K.; McCafferty, P.; Hawkins, W.E.; Maas, R.; Sipsas, S. A comparison of the digestibility of a range of lupin and soybean protein products when fed to either Atlantic salmon (Salmo salar) or rainbow trout (Oncorhynchus mykiss). Aquaculture 2004, 237, 333–346. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Fish and Shrimp; National Academy Press: Washington, DC, USA, 2011; p. 376. [Google Scholar]
- Devasagayam, T.; Tilak, J.C.; Bollor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. JAPI 2004, 52, 794–804. [Google Scholar] [PubMed]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.-C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Machlin, L.J.; Bendich, A. Free radical tissue damage: Prospective role of antioxidant nutrients. FASEB J. 1987, 1, 441–445. [Google Scholar] [CrossRef]
- Logarušiš, M.; Slivac, I.; Radošević, K.; Bagović, M.; Redovniković, I.R.; Srček, V.G. Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Mol. Biol. Rep. 2019, 46, 6079–6085. [Google Scholar] [CrossRef] [PubMed]
Content/Sample | HSHE | HSWH | HSCA | HSHU |
---|---|---|---|---|
Moisture (%) | 5.1 ± 0.1 | 3.1 ± 0.0 | 8.2 ± 0.1 | 6.7 ± 0.0 |
Ash (%) | 5.3 ± 0.5 | 4.5 ± 0.2 | 6.1 ± 0.2 | 2.4 ± 0.0 |
Carbohydrate (%) | 2.8 ± 0.2 | 11.1 ± 0.5 | 21.3 ± 6.3 | 33.7 ± 6.9 |
Lipid (%) 1 | 54.7 ± 2.3 | 48.0 ± 2.8 | 13.1 ± 0.3 | 17.5 ± 0.1 |
Crude Protein (% N × 5.37) | 31.6 ± 0.2 | 27.1 ± 0.2 | 30.4 ± 0.5 | 8.6 ± 0.1 |
Amino Acid/Sample | HSHE | HSWH ** | HSCA | HSHU |
---|---|---|---|---|
Histidine (His) * | 23.7 ± 1.5 | 25.0 ± 2.8 | 23.7 ± 2.1 | 18.0 ± 0.0 |
Serine (Ser) | 12.3 ± 3.5 | 10.0 ± 0.0 | 13.7 ± 3.8 | 8.0 ± 0.0 |
Arginine (Arg) * | 112.0 ± 6.6 | 115.0 ± 8.5 | 109.0 ± 7.9 | 81.3 ± 1.2 |
Glycine (Gly) | 37.7 ± 2.5 | 39.5 ± 3.5 | 38.0 ± 2.6 | 29.7 ± 0.6 |
Aspartate (Asp) | 98.0 ± 5.6 | 95.5 ± 4.9 | 88.7 ± 1.2 | 72.3 ± 0.6 |
Glutamate (Glu) | 156.0 ± 9.2 | 159.0 ± 4.2 | 146.7 ± 5.5 | 117.0 ± 0.0 |
Threonine (Thr) * | 16.3 ± 2.1 | 15.0 ± 0.0 | 17.7 ± 2.9 | 12.0 ± 0.0 |
Alanine (Ala) | 37.7 ± 2.5 | 38.0 ± 1.4 | 34.7 ± 1.2 | 28.0 ± 0.0 |
Proline (Pro) | 32.3 ± 2.1 | 33.5 ± 0.7 | 32.0 ± 1.7 | 25.0 ± 0.0 |
Cysteine (Cys) | - | - | 1.0 ± 1.0 | - |
Lysine (Lys) * | 26.3 ± 2.1 | 24.0 ± 2.8 | 22.7 ± 1.2 | 19.3 ± 0.6 |
Tyrosine (Tyr) | 22.0 ± 3.5 | 24.0 ± 2.8 | 18.0 ± 3.5 | 17.0 ± 1.0 |
Methionine (Met) * | 24.0 ± 3.6 | 27.0 ± 0.0 | 19.0 ± 6.1 | 17.7 ± 2.9 |
Valine (Val) * | 51.3 ± 3.1 | 53.5 ± 0.7 | 48.7 ± 2.1 | 39.0 ± 0.0 |
Isoleucine (Ile) * | 42.3 ± 3.1 | 43.5 ± 0.7 | 40.0 ± 1.7 | 32.0 ± 0.0 |
Leucine (Leu) * | 61.3 ± 4.0 | 63.5 ± 0.7 | 58.0 ± 2.6 | 46.0 ± 0.0 |
Phenylalanine (Phe) * | 43.3 ± 3.1 | 44.5 ± 6.4 | 42.0 ± 4.4 | 32.3 ± 0.6 |
Total Amino Acid (mg/g) | 796.7 ± 48.0 | 810.5 ± 13.4 | 753.3 ± 30.6 | 594.7 ± 1.5 |
Crude Protein (% N × 5.37) | 85.1 ± 0.2 | 86.4 ± 0.1 | 87.8 ± 0.3 | 77.0 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banskota, A.H.; Tibbetts, S.M.; Jones, A.; Stefanova, R.; Behnke, J. Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa L.) By-Products for Salmonid Feed Applications. Molecules 2022, 27, 4794. https://doi.org/10.3390/molecules27154794
Banskota AH, Tibbetts SM, Jones A, Stefanova R, Behnke J. Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa L.) By-Products for Salmonid Feed Applications. Molecules. 2022; 27(15):4794. https://doi.org/10.3390/molecules27154794
Chicago/Turabian StyleBanskota, Arjun H., Sean M. Tibbetts, Alysson Jones, Roumiana Stefanova, and Joerg Behnke. 2022. "Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa L.) By-Products for Salmonid Feed Applications" Molecules 27, no. 15: 4794. https://doi.org/10.3390/molecules27154794
APA StyleBanskota, A. H., Tibbetts, S. M., Jones, A., Stefanova, R., & Behnke, J. (2022). Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa L.) By-Products for Salmonid Feed Applications. Molecules, 27(15), 4794. https://doi.org/10.3390/molecules27154794