In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrumentation
2.2. Fabrication of Wire Coated with Adsorbent
2.3. Characterization of GO:PANI/ZNRs/ZIF−8 Adsorbent
2.4. INME Process
2.5. Adsorption Kit Fabrication
2.6. Optimization Using Response Surface Methodology (RSM)
3. Results and Discussion
3.1. Optimization of Human Body Odor Adsorbent Fabrication Conditions Using RSM
3.2. Optimization of INME Extraction Conditions Using RSM
3.3. Characterization of the Adsorbent
3.4. Comparison of Extraction Efficiency
3.5. Feasibility Test Using an Adsorption Kit
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-NonenalNewly Found in Human Body Odor Tends to Increase with Aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, S.; Hoshino, K.; Kusuhara, M. Odor Associated with Aging. J. Anti-Aging Med. 2010, 7, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Ackerl, K.; Atzmueller, M.; Grammer, K. The scent of fear. Neuroendocr. Lett. 2002, 23, 79–84. [Google Scholar]
- Singh, D.; Bronstad, P.M. Female body odour is a potential cue to ovulation. Proc. R. Soc. B 2001, 268, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Abaffy, T.; Möller, M.; Riemer, D.D.; Milikowski, C.; Defazio, R.A. A Case Report-olatile Metabolomic Signature of Malignant Melanoma using Matching Skin as a Control. J. Cancer Sci. Ther. 2011, 3, 140–144. [Google Scholar] [CrossRef]
- Jha, S.K. Characterization of human body odor and identification of aldehydes using chemical sensor. Rev. Anal. Chem. 2017, 36, 20160028. [Google Scholar] [CrossRef]
- Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G. Analyses of volatile organic compounds from human skin. Br. J. Derm. 2008, 159, 780–791. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Sekine, Y.; Furukawa, S.; Takahashi, M.; Oikawa, D. Measurement of 2-nonenal and diacetyl emanating from human skin surface employing passive flux sampler—GCMS system. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1028, 181–185. [Google Scholar] [CrossRef]
- Doo, H.; Won, B.; Han, J.P.; Hwang, S.J.; Kim, J.; Park, J.; Park, S.N. Antioxidative Effect and Tyrosinase Inhibitory Activity of Lindera obtusiloba Blume Extracts. J. Soc. Cosmet. Sci. Korea 2012, 38, 297. [Google Scholar]
- Curran, A.; Rabin, S.; Prada, P.; Furton, K. Comparison of the Volatile Organic Compounds Present in Human Odor Using Spme-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619. [Google Scholar] [CrossRef]
- Curran, A.M.; Ramirez, C.F.; Schoon, A.A.; Furton, K.G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B Analt. Technol. Biomed. Life Sci. 2007, 846, 86–97. [Google Scholar] [CrossRef]
- Penn, D.J.; Oberzaucher, E.; Grammer, K.; Fischer, G.; Soini, H.A.; Wiesler, D.; Novotny, M.V.; Dixon, S.J.; Xu, Y.; Brereton, R.G. Individual and gender fingerprints in human body odour. J. R. Soc. Interface 2007, 4, 331–340. [Google Scholar] [CrossRef]
- Jiang, R.; Cudjoe, E.; Bojko, B.; Abaffy, T.; Pawliszyn, J. A non-invasive method for in vivo skin volatile compounds sampling. Anal. Chim. Acta 2013, 804, 111–119. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yoon, J.H.; Bae, S.; Lee, D.S. In-needle microextraction coupled with gas chromatography/mass spectrometry for the analysis of phthalates generating from food containers, Food Anal. Methods 2018, 11, 2767–2777. [Google Scholar]
- Jeon, H.L.; Son, H.H.; Bae, S.; Lee, D.S. Use of polyacrylic acid and polydimethylsiloxane mixture for in-needle microextraction of volatile aroma compounds in essential oils, Bull. Korean Chem. Soc. 2015, 36, 2730–2739. [Google Scholar] [CrossRef]
- Hwang, Y.R.; Lee, Y.L.; Ahn, S.Y.; Bae, S. Electrochemically polyaniline-coated microextraction needle for phthalates in water. Anal. Sci. Technol. 2020, 33, 76–85. [Google Scholar]
- Bang, Y.J.; Hwang, Y.R.; Lee, S.Y.; Park, S.M.; Bae, S. Sol–gel-adsorbent-coated extraction needles to detect volatile compounds in spoiled fish. J. Sep. Sci. 2017, 40, 3839–3847. [Google Scholar] [CrossRef]
- Kim, S.; Bae, S.; Lee, D.-S. Characterization of scents from Juniperus chinensis by headspace in-needle microextraction using graphene oxide-polyaniline nanocomposite coated wire followed by gas chromatography-mass spectrometry. Talanta 2022, 245, 123463. [Google Scholar] [CrossRef]
- Jeong, H.Y. Analysis of Age-related Volatile Organic Compounds Using INME Coated with PDMS/MWCNT followed by GC/MS. Master’s Thesis, Seoul Women’s University, Seoul, Korea, 2021. [Google Scholar]
- Son, H.; Bae, S.; Lee, D. New needle packed with polydimethylsiloxane having a micro-bore tunnel for headspace in-needle microextraction of aroma components of citrus oils. Anal. Chim. Acta 2012, 751, 86–93. [Google Scholar] [CrossRef]
- Ji, J.; Liu, H.; Chen, J.; Zeng, J.; Huang, J.; Gao, L.; Wang, Y.; Chen, X. ZnO nanorod coating for solid phase microextraction and its applications for the analysis of aldehydes in instant noodle samples. J. Chromatogr. A 2012, 1246, 22–27. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Y.; Zheng, X.; Li, Z.; Zeng, T.; Duan, W.; Li, Q.; Shang, X.; Dong, B. Controllable Transformation of Aligned ZnO Nanorods to ZIF−8 as Solid-Phase Microextraction Coatings with Tunable Porosity, Polarity, and Conductivity. Anal. Chem. 2019, 91, 5091–5097. [Google Scholar] [CrossRef]
- Park, H.E.; Ho, K. Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology. Appl. Chem. Eng. 2013, 24, 299–304. [Google Scholar]
- Ramezanzadeh, M.; Asghari, M.; Ramezanzadeh, B.; Bahlakeh, G. Fabrication of an efficient system for Zn ions removal from industrial wastewater based on graphene oxide nanosheets decorated with highly crystalline polyaniline nanofibers (GO-PANI): Experimental and ab initio quantum mechanics approaches. Chem. Eng. J. 2018, 337, 385–397. [Google Scholar] [CrossRef]
- Brožová, L.; Holler, P.; Kovářová, J.; Stejskal, J.; Trchová, M. The stability of polyaniline in strongly alkaline or acidic aqueous media. Polym. Degrad. Stab. 2008, 93, 592–600. [Google Scholar] [CrossRef]
- Andres Verges, M.; Serna, C.J. Morphological characterization of ZnO powders by X-ray and IR spectroscopy. J. Mater. Sci. Lett. 1988, 7, 970–972. [Google Scholar] [CrossRef]
- Ling, X.; Chen, Z. Immobilization of zeolitic imidazolate frameworks with assist of electrodeposited zinc oxide layer and application in online solid-phase microextraction of Sudan dyes. Talanta 2019, 192, 142–146. [Google Scholar] [CrossRef]
- Storck, S.; Bretinger, H.; Maier, W.F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A 1998, 174, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Xing, T.; Lou, Y.; Bao, Q.; Chen, J. Surfactant-assisted synthesis of ZIF−8 nanocrystals in aqueous solution via microwave irradiation. CrystEngComm 2014, 16, 8994–9000. [Google Scholar] [CrossRef]
- He, L.; Li, L.; Zhang, L.; Xing, S.; Wang, T.; Li, G.; Wu, X.; Su, Z.; Wang, C. ZIF−8 templated fabrication of rhombic dodecahedron-shaped ZnO@SiO2, ZIF−8@SiO2 yolk–shell and SiO2 hollow nanoparticles. CrystEngComm 2014, 16, 6534. [Google Scholar] [CrossRef]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; Publications office of the European Union: Geel, Belgium, 2016; Volume 28099. [Google Scholar] [CrossRef]
Compound | Model Formula |
---|---|
trans-2-Nonenal | 1,373,897 + 65,796 X1 + 71,554 X2 − 165,521 X3 + 737,146 X12 − 307,202 X22 + 2692 X32 − 9779 X1X2 + 70,330 X1X3 − 3443 X2X3 |
Benzothiazole | 2,738,952 + 459,936 X1 + 881,137 X2 + 255,043 X3 + 1,078,534 X12 + 520,184 X22 + 591,432 X32 − 221,829 X1X2 − 241,702 X1X3 + 320,824 X2X3 |
Isopropyl palmitate | 55,849 + 10,191 X1 + 10,199 X2 + 7497 X3 − 11,547 X12 − 4503 X22 − 15,959 X32 + 3465 X1X2 + 1502 X1X3 + 3925 X2X3 |
Hexyl salicylate | 667,682 + 81,671 X1 + 81,140 X2 + 93,743 X3 + 47,534 X12 − 18,836 X22 − 27,142 X32 − 888 X1X2 + 24,879 X1X3 + 34,062 X2X3 |
α-Hexyl cinnamaldehyde | 1,127,759 + 173,707 X1 + 296,075 X2 + 229,720 X3 + 53,389 X12 + 84,526 X22 + 26,918 X32 + 150,333 X1X2 − 60,256 X1X3 + 112,567 X2X3 |
Compound | Model Formula |
---|---|
trans-2-Nonenal | 6,715,422 + 1,488,188 X1 + 990,247 X2 − 290,098 X3 − 154,172 X12 − 416,644 X22 + 858,182 X32 − 1,371,651 X1X2 + 379,903 X1X3 − 108,883 X2X3 |
Benzothiazole | 3,475,053 − 572,871 X1 + 578,351 X2 + 260,594 X3 + 80,741 X12 + 19,364X22 + 507,335 X32 − 1,048,215 X1X2 − 390,972 X1X3 + 686,615 X2X3 |
Isopropyl palmitate | 70,372 + 50,455 X1 + 25,337 X2 − 1915 X3 + 15,132 X12 − 7361 X22 + 20,237 X32 + 9741 X1X2 − 6146 X1X3 − 18,574 X2X3 |
Hexyl salicylate | 1,477,657 + 311,065 X1 + 284,017 X2 + 104,003 X3 − 37,787 X12 − 246,864 X22 + 85,773 X32 + 5355 X1X2 + 18,324 X1X3 + 76,669 X2X3 |
α-Hexyl cinnamaldehyde | 2,459,037 + 6,365,250 X1 + 452,391 X2 − 67,492 X3 − 291,829 X12 − 446,990 X22 + 118,680 X32 + 20,695 X1X2 − 27,709 X1X3 + 195,394 X2X3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Bae, S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS. Molecules 2022, 27, 4795. https://doi.org/10.3390/molecules27154795
Kim S, Bae S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS. Molecules. 2022; 27(15):4795. https://doi.org/10.3390/molecules27154795
Chicago/Turabian StyleKim, Sehyun, and Sunyoung Bae. 2022. "In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS" Molecules 27, no. 15: 4795. https://doi.org/10.3390/molecules27154795
APA StyleKim, S., & Bae, S. (2022). In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS. Molecules, 27(15), 4795. https://doi.org/10.3390/molecules27154795