Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral Chroman-Fused Pyrrolidinediones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Reaction Conditions
2.2. Substrate Scope
2.3. Scaled-Up Synthesis
2.4. X-ray Diffraction Analysis
2.5. Controlled Reactions and Plausible Mechanism
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Materials
4.3. Procedure for the Asymmetric Synthesis of Compounds 3
4.4. Procedure for the Scaled-Up Synthesis of Compound 3aa
4.5. Procedure for the Synthesis of Compound 4
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shaheen, F.; Ahmad, M.; Nahar Khan, S.N.; Hussain, S.S.; Anjum, S.; Tashkhodjaev, B.; Turgunov, K.; Sultankhodzhaev, M.N.; Choudhary, M.I.; Atta-ur-Rahman. New α-glucosidase inhibitors and antibacterial compounds from Myrtus communis L. Eur. J. Org. Chem. 2006, 2006, 2371–2377. [Google Scholar] [CrossRef]
- Salni, D.; Sargent, M.V.; Skelton, B.W.; Soediro, I.; Sutisna, M.; White, A.H.; Yulinah, E. Rhodomyrtone, an antibotic from Rhodomyrtus tomentosa. Aust. J. Chem. 2002, 55, 229–232. [Google Scholar] [CrossRef]
- Cain, J. Mirœstrol: An Œstrogen from the plant Pueraria Mirifica. Nature 1960, 188, 774–777. [Google Scholar] [CrossRef]
- Kashiwada, Y.; Yamazaki, K.; Ikeshiro, Y.; Yamagishi, T.; Fujioka, T.; Mihashi, K.; Mizuki, K.; Mark, C.L.; Fowke, K.; Susan, L.M.; et al. Isolation of rhododaurichromanic acid B and the anti-HIV principles rhododaurichromanic acid A and rhododaurichromenic acid from Rhododendron dauricum. Tetrahedron 2001, 57, 1559–1563. [Google Scholar] [CrossRef]
- Li, Y.K.; Meng, Y.L.; Yang, Y.C.; Qin, Y.; Xia, C.F.; Ye, Y.Q.; Gao, X.M.; Hu, Q.F. Chromones from the stems of Cassia fistula and their anti-tobacco mosaic virus activities. Phytochem. Lett. 2014, 10, 46–49. [Google Scholar] [CrossRef]
- Duan, Y.D.; Jiang, Y.Y.; Guo, F.X.; Chen, L.X.; Xu, L.L.; Zhang, W.; Liu, B. The antitumor activity of naturally occurring chromones: A review. Fitoterapia 2019, 135, 114–129. [Google Scholar] [CrossRef]
- Mohsin, N.U.A.; Irfan, M.; Hassan, S.U.; Saleem, U. Current strategies in development of new chromone derivatives with diversified pharmacological activities: A review. Pharm. Chem. J. 2020, 54, 241–257. [Google Scholar] [CrossRef]
- Sugita, Y.; Takao, K.; Uesawa, Y.; Nagai, J.; Iijima, Y.; Sano, M.; Sakagami, H. Development of newly synthesized chromone derivatives with high tumor specificity against human oral squamous cell carcinoma. Medicines 2020, 7, 50. [Google Scholar] [CrossRef]
- Zhan, Q.; Xu, Y.; Zhan, L.; Wang, B.; Guo, Y.; Wu, X.; Ai, W.; Song, Z.; Yu, F. Chromone derivatives CM3a potently eradicate Staphylococcus aureus biofilms by inhibiting cell adherence. Infect. Drug Resist. 2021, 14, 979–986. [Google Scholar] [CrossRef]
- Chu, Y.-C.; Chang, C.-H.; Liao, H.-R.; Fu, S.-L.; Chen, J.J. Anti-cancer and anti-inflammatory activities of three new chromone derivatives from the marine-derived Penicillium citrinum. Mar. Drugs 2021, 19, 408. [Google Scholar] [CrossRef]
- Frasinyuk, M.; Chhabria, D.; Kartsev, V.; Dilip, H.; Sirakanyan, S.N.; Kirubakaran, S.; Petrou, A.; Geronikaki, A.; Spinelli, D. Benzothiazole and chromone derivatives as potential ATR kinase inhibitors and anticancer agents. Molecules 2022, 27, 4637. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Dwivedy, I.; Dhar, J.D.; Dwivedy, A.; Ray, S. Evaluation of piperidinoethoxy moiety as an antiestrogenic substituent in non-steroidal anti-estrogens: Fertility regulation. Bioorg. Med. Chem. Lett. 1997, 7, 2131–2136. [Google Scholar] [CrossRef]
- Ferreira, S.B.; da Silva, F.d.C.; Pinto, A.C.; Gonzaga, D.T.G.; Ferreira, V.F. Syntheses of chromenes and chromanes via o-quinone methide intermediates. J. Heterocycl. Chem. 2009, 46, 1080–1097. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Wang, S.Z.; Yao, Z.J. Asymmetric annulation of 3-alkynylacrylaldehydes with styrene-type olefins by synergetic relay catalysis from AgOAc and chiral phosphoric acid. J. Org. Chem. 2014, 79, 7063–7074. [Google Scholar] [CrossRef]
- Yu, S.Y.; Zhang, H.; Gao, Y.; Mo, L.; Wang, S.; Yao, Z.J. Asymmetric cascade annulation based on enantioselective oxa-Diels–Alder cycloaddition of in situ generated isochromenyliums by cooperative binary catalysis of Pd(OAc)2 and (S)-trip. J. Am. Chem. Soc. 2013, 135, 11402–11407. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Urbanietz, G.; Hahn, R.; Raabe, G. Asymmetric synthesis of functionalized chromans via a one-pot organocatalytic domino Michael-hemiacetalization or -lactonization and dehydration sequence. Synthesis 2012, 44, 773–782. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, J.; Liu, S.; Yu, C.; Miao, Z. Asymmetric synthesis of spiro[chroman-3,3′-pyrazol] scaffolds with an all-carbon quaternary stereocenter via a oxa-Michael–Michael cascade strategy with bifunctional amine-thiourea organocatalysts. RSC Adv. 2015, 5, 91108–91113. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Li, X.Y.; Chen, Q.; Su, J.H.; Jia, F.F.; Qiu, S.; Ma, M.X.; Sun, Q.T.; Yan, W.J.; Wang, K.R.; et al. Highly enantioselective cascade reaction catalyzed by squaramides: The Synthesis of CF3-containing chromanes. Org. Lett. 2015, 17, 3826–3829. [Google Scholar] [CrossRef]
- Saha, P.; Biswas, A.; Molleti, N.; Singh, V.K. Enantioselective synthesis of highly substituted chromans via the oxa-Michael–Michael cascade Reaction with a bifunctional organocatalyst. J. Org. Chem. 2015, 80, 11115–11122. [Google Scholar] [CrossRef]
- Andrés, J.M.; Maestro, A.; Valle, M.; Valencia, I.; Pedrosa, R. Diastereo- and enantioselective syntheses of trisubstituted benzopyrans by cascade reactions catalyzed by monomeric and polymeric recoverable bifunctional thioureas and squaramides. ACS Omega 2018, 3, 16591–16600. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Q.; Jiang, W.C.; Tan, J.B.; Yan, J.Z.; Zhan, R.T.; Huang, H.C. Organocatalytic β,γ-selective activation of deconjugated butenolides: Access to chiral Tricyclic Chroman-butyrolactones. J. Org. Chem. 2021, 86, 12821–12830. [Google Scholar] [CrossRef]
- Wang, S.S.; He, J.; An, Z. Heterogeneous enantioselective synthesis of chromans via the oxa-Michael–Michael cascade reaction synergically catalyzed by grafted chiral bases and inherent hydroxyls on mesoporous silica surface. Chem. Commun. 2017, 53, 8882–8885. [Google Scholar] [CrossRef]
- Kotame, P.; Hong, B.C.; Liao, J.H. Enantioselective synthesis of the tetrahydro-6H-benzo[c]chromenes via domino Michael–Aldol condensation: Control of five stereocenters in a quadruple-cascade organocatalytic multi-component reaction. Tetrahedron Lett. 2009, 50, 704–707. [Google Scholar] [CrossRef]
- Hong, B.C.; Kotame, P.; Tsia, C.W.; Liao, J.H. Enantioselective total synthesis of (+)-conicol via cascade three-component organocatalysis. Org. Lett. 2010, 12, 776–779. [Google Scholar] [CrossRef]
- Xia, A.B.; Wu, C.; Wang, T.; Zhang, Y.P.; Du, X.H.; Zhong, A.G.; Xu, D.Q.; Xu, Z.Y. Enantioselective cascade oxa-Michael–Michael reactions of 2-hydroxynitrostyrenes with enones using a prolinol thioether catalyst. Adv. Synth. Catal. 2014, 356, 1753–1760. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.N.; Raabe, G.; Enders, D. A short asymmetric synthesis of the benzopyrano[3,4-c]pyrrolidine core via an organocatalytic domino oxa-Michael/Michael reaction. Adv. Synth. Catal. 2014, 354, 2629–2634. [Google Scholar] [CrossRef]
- Mao, H.B.; Lin, A.J.; Tang, Y.; Shi, Y.; Hu, H.W.; Cheng, Y.X.; Zhu, C.J. Organocatalytic oxa/aza-Michael–Michael cascade strategy for the construction of spiro[chroman/tetrahydroquinoline-3,3′-oxindole] scaffolds. Org. Lett. 2013, 15, 4062–4065. [Google Scholar] [CrossRef]
- Tang, C.K.; Feng, K.X.; Xia, A.B.; Li, C.; Zheng, Y.Y.; Xu, Z.Y.; Xu, D.Q. Asymmetric synthesis of polysubstituted chiral chromans via an organocatalytic oxa-Michael-nitro-Michael domino reaction. RSC Adv. 2018, 8, 3095–3098. [Google Scholar] [CrossRef] [Green Version]
- Guan, Q.; Zuo, D.Y.; Jiang, N.; Qi, H.; Zhai, Y.P.; Bai, Z.S.; Feng, D.J.; Yang, L.; Jiang, M.Y.; Bao, K.; et al. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues. Bioorg. Med. Chem. Lett. 2015, 25, 631–635. [Google Scholar] [CrossRef]
- Lin, W.L.; Lee, Y.J.; Wang, S.M.; Huang, P.Y.; Tseng, T.H. Inhibition of cell survival, cell cycle progression, tumor growth and cyclooxygenase-2 activity in MDA-MB-231 breast cancer cells by camphorataimide B. Eur. J. Pharmacol. 2012, 680, 8–15. [Google Scholar] [CrossRef]
- Xiang, M.; Li, C.Y.; Song, X.J.; Zou, Y.; Huang, Z.C.; Li, X.; Tian, F.; Wang, L.X. Organocatalytic and enantioselective [4+2] cyclization between hydroxymaleimides and ortho-hydroxyphenyl para-quinone methide-selective preparation of chiral hemiketals. Chem. Commun. 2020, 56, 14825–14828. [Google Scholar] [CrossRef]
- Song, Y.X.; Du, D.M. Asymmetric synthesis of spirooxindole-fused spirothiazolones via squaramide-catalysed reaction of 3-chlorooxindoles with 5-alkenyl thiazolones. Org. Biomol. Chem. 2019, 17, 5375–5380. [Google Scholar] [CrossRef]
- Li, T.H.; Du, D.M. Asymmetric synthesis of isoxazole and trifluoromethyl-containing 3,2′-pyrrolidinyl dispirooxindoles via squaramide-catalysed [3 + 2] cycloaddition reactions. Org. Biomol. Chem. 2022, 20, 817–823. [Google Scholar] [CrossRef]
- CCDC 2180149 (for 3ca) Contains the Supplementary Crystallographic Data for This Paper. These Data can be Obtained Free of Charge. Available online: http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 19 June 2022).
- Yang, H.; Ren, H.X.; Chen, F.; Zhang, Z.B.; Zou, Y.; Chen, C.; Song, X.J.; Tian, F.; Peng, L.; Wang, L.X. Organocatalytic asymmetric annulation between hydroxymaleimides and nitrosoarenes: Stereoselective preparation of chiral quaternary N-hydroxyindolines. Org. Lett. 2017, 19, 2805–2808. [Google Scholar] [CrossRef]
- Pérez, V.T.; Fuentes de Arriba, A.L.; Monleón, L.M.; Simón, L.; Rubio, O.H.; Sanz, F.; Morán, J.R. A high yield procedure for the preparation of 2-hydroxynitrostyrenes: Synthesis of imines and tetracyclic 1,3-benzoxazines. Eur. J. Org. Chem. 2014, 2014, 3242–3248. [Google Scholar] [CrossRef]
- Zhu, Y.; Malerich, J.P.; Rawal, V.H. Squaramide-catalyzed enantioselective Michael addition of diphenyl phosphite to nitroalkenes. Angew. Chem. Int. Ed. 2010, 49, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Du, D.M. Highly enantioselective Michael addition of nitroalkanes to chalcones using chiral squaramides as hydrogen bonding organocatalyst. Org. Lett. 2010, 12, 5450–5453. [Google Scholar] [CrossRef]
- Yang, W.; Du, D.M. Chiral squaramide-catalyzed highly enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinones to nitroalkenes. Adv. Synth. Catal. 2011, 353, 1241–1246. [Google Scholar] [CrossRef]
- Vakulya, B.; Varga, S.; Csampai, A.; Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef]
Entry | Solvent | Catalyst | Temperate (°C) | Yield b (%) | dr c | ee d (%) |
---|---|---|---|---|---|---|
1 | CH2Cl2 | C1 | rt | 82 | >20:1 | 53 |
2 | CH2Cl2 | C1 | −16 | 80 | >20:1 | 87 |
3 | CH2Cl2 | C2 | rt | 85 | >20:1 | 55 |
4 | CH2Cl2 | C2 | −16 | 83 | >20:1 | 73 |
5 | CH2Cl2 | C3 | −16 | 88 | >20:1 | 96 |
6 | CH2Cl2 | C4 | −16 | 79 | >20:1 | 77 |
7 | CH2Cl2 | C5 | −16 | 77 | >20:1 | 95 |
8 | CH2Cl2 | C6 | −16 | 89 | >20:1 | 59 |
9 | CH2Cl2 | C7 | −16 | 82 | >20:1 | 81 |
10 | CH2Cl2 | C8 | −16 | 78 | >20:1 | 73 |
11 | CH2Cl2 | C9 | −16 | 90 | 16:1 | −69 |
12 | CH2Cl2 | C10 | −16 | 81 | 9:1 | 59 |
13 | DCE | C3 | −16 | 87 | >20:1 | 93 |
14 | Toluene | C3 | −16 | 80 | >20:1 | 85 |
15 | MeCN | C3 | −16 | 89 | >20:1 | 79 |
16 | CHCl3 | C3 | −16 | 83 | >20:1 | 87 |
17 | THF | C3 | −16 | trace | – | – |
18 e | CH2Cl2 | C3 | −16 | 86 | >20:1 | 95 |
19 f | CH2Cl2 | C3 | −16 | 80 | >20:1 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, D.-H.; Niu, C.; Du, D.-M. Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral Chroman-Fused Pyrrolidinediones. Molecules 2022, 27, 5081. https://doi.org/10.3390/molecules27165081
Xie D-H, Niu C, Du D-M. Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral Chroman-Fused Pyrrolidinediones. Molecules. 2022; 27(16):5081. https://doi.org/10.3390/molecules27165081
Chicago/Turabian StyleXie, Dong-Hua, Cheng Niu, and Da-Ming Du. 2022. "Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral Chroman-Fused Pyrrolidinediones" Molecules 27, no. 16: 5081. https://doi.org/10.3390/molecules27165081
APA StyleXie, D. -H., Niu, C., & Du, D. -M. (2022). Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral Chroman-Fused Pyrrolidinediones. Molecules, 27(16), 5081. https://doi.org/10.3390/molecules27165081