Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic, Total Flavonoid, and Synephrine Contents
2.2. Soluble Phenolic Acids
2.3. Contents of Flavone and Flavanone
2.3.1. Flavone
2.3.2. Flavanone
2.4. Antioxidant Capacity
2.5. Correlation between Antioxidant Activity and Selected Phytochemicals
3. Materials and Methods
3.1. Samples
3.2. Chemicals
3.3. Determination of Total Phenolic, Total Flavonoid, and Synephrine Contents
3.3.1. Total Phenolic Content
3.3.2. Total Flavonoid Content
3.3.3. Synephrine Content
3.4. Measurement of Flavone and Flavanone
3.5. Determination of Soluble Phenolic Acids
3.6. Antioxidant Activity Assay
3.6.1. ABTS Assay
3.6.2. FRAP Assay
3.6.3. DPPH Assay
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nebeling, L. Phytochemicals in Nutrition and Health; Academy of Nutrition and Dietetics; CRC Press: Boca Raton, FL, USA, 2003; Volume 103, p. 786. [Google Scholar]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, N.M. Phytochemical characteristics of citrus peel and effect of conven tional and nonconventional processing on phenolic compounds: A review. Food Reviews International 2016, 6, 587–619. [Google Scholar] [CrossRef]
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Edition Committee. Chinese Pharmacopoeia Edition; Chemical Industry Press: Beijing, China, 2005; pp. 171–172. [Google Scholar]
- Ye, X.Q.; Chen, J.C.; Liu, D.H.; Jiang, P.; Shi, J.; Xue, S.; Wu, D.; Xu, J.; Kakuda, Y. Identification of bioactive composition and antioxidant activity in young mandarin fruits. Food Chem. 2011, 124, 1561–1566. [Google Scholar] [CrossRef]
- Xu, G.H.; Liu, D.H.; Chen, J.C.; Ye, X.Q.; Ma, Y.Q. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem. 2008, 106, 545–551. [Google Scholar] [CrossRef]
- Chen, X.T.; Yuan, K.; Liu, H.L. Phenolic contents and antioxidant activities in ethanol extracts of Citrus reticulata Blanco cv. Ougan fruit. J. Food Agric. Environ. 2010, 8, 150–155. [Google Scholar]
- Zhang, Y.M.; Sun, Y.J.; Xi, W.P.; Shen, Y.; Qiao, L.P.; Zhong, L.Z.; Ye, X.Q.; Zhou, Z.Q. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem. 2014, 145, 674–680. [Google Scholar] [CrossRef]
- Arbo, M.; Larentis, E.; Linck, V.; Aboy, A.; Pimentel, A.; Henriques, A.; Dallegrave, E.; Garcia, S.; Leal, M.; Limberger, R. Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food Chem. Toxicol. 2008, 46, 2770–2775. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, A.; Llosá, M.J.; Cano, A. Analysis of bioactive compounds in seven citrus cultivars. Food Sci. Technol. Int. 2011, 17, 55–58. [Google Scholar] [CrossRef]
- Wang, H.; Chen, G.; Guo, X.; Abbasi, A.M.; Liu, R.H. Influence of the stage of ripeness on the phytochemical profiles, antioxidant and antiproliferative activities in different parts of Citrus reticulata Blanco cv. Chachiensis. LWT-Food Sci. Technol. 2016, 69, 67–75. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, G.; Jiang, D.; Zhou, Z. Phenolic compositions and antioxidant activities of grapefruit (Citrus paradisi Macfadyen) varieties cultivated in China. Int. J. Food Sci. Nutr. 2015, 66, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of Antioxidant Potency of Commonly Consumed Polyphenol-Rich Beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Z.; Sun, Y.J.; Lou, S.T.; Li, H.; Ye, X.Q. In vitro digestion combined with cellular assay to determine the antioxidant activity in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits: A comparison with traditional methods. Food Chem. 2014, 146, 363–370. [Google Scholar] [CrossRef]
- Tian, J.H.; Chen, J.L.; Lv, F.Y.; Chen, S.G.; Chen, J.C.; Liu, D.H.; Ye, X.Q. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chem. 2016, 197, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Di, L.C.; Dos, S.A.; Colombo, F.; Moro, E.; Dell’Agli, M.; Restani, P. Development and validation of HPLC method to measure active amines in plant food supplements containing Citrus aurantium L. Food Control. 2014, 46, 136–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.Z.; Tao, W.Y.; Li, L.Q.; Wei, C.Y.; Duan, J.; Chen, S.G.; Ye, X.Q. Antioxidant and antiproliferative activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves. J. Funct. Foods. 2016, 27, 645–654. [Google Scholar] [CrossRef]
- Bao, J.; Cai, Y.; Sun, M.; Wang, G.Y.; Corke, H. Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 2005, 53, 2327–2332. [Google Scholar] [CrossRef]
PG | OG | HY | TC | ZS | WS | |
---|---|---|---|---|---|---|
Protocatechuic acid | 16.16 ± 1.87 b | 5.88 ± 0.24 d | 10.71 ± 6.53 bcd | 5.61 ± 1.47 d | 71.38 ± 22.52 a | 8.92 ± 0.30 c |
p-hydroxybenzoic acid | 259.07 ± 3.51 b | 120.71 ± 0.83 c | 359.82 ± 17.26 a | 203.00 ± 72.13 b | 198.73 ± 4.39 b | 242.07 ± 10.03 b |
vanillic | 107.42 ± 3.68 d | 39.49 ± 1.26 e | 381.55 ± 18.72 a | 137.15 ± 49.20 bcd | 155.73 ± 7.86 c | 178.03 ± 3.401 b |
caffeic acid | 23.27 ± 0.02 d | 352.31 ± 81.76 a | 17.86 ± 1.97 e | 20.78 ± 1.39 de | 81.69 ± 14.37 b | 26.47 ± 0.16 c |
p-coumaric acid | 979.93 ± 23.58 a | 937.09 ± 16.01 a | 739.12 ± 34.86 b | 774.87 ± 27.07 b | 995.18 ± 96.88 a | 952.96 ± 9.93 a |
ferulic acid | 3524.80 ± 54.5 c | 7104.73 ± 104.59 a | 1804.28 ± 76.76 e | 3328.31 ± 11.71 d | 4279.97 ± 42.25 b | 4196.36 ± 55.96 b |
sinapic acid | 42.78 ± 0.96 c | 43.94 ± 1.88 bc | 58.25 ± 2.14 a | 56.33 ± 9.68 ab | 65.67 ± 6.05 a | 48.66 ± 1.93 b |
Total | 4953.44 ± 75.44 c | 8604.17 ± 43.03 a | 3371.59 ± 58.24 e | 4526.06 ± 58.87 d | 5848.34 ± 54.58 b | 5653.48 ± 54.24 b |
Genotypes | PG | OG | HY | TC | ZS | WS | |
---|---|---|---|---|---|---|---|
Eriocitrin | 0.58 ± 0.02 d | 0.27 ± 0.02 | 1.43 ± 0.02 a | 0.88 ± 0.00 c | 0.62 ± 0.01 d | 1.15 ± 0.00 b | |
Taxifolin | ND | ND | 0.13 ± 0.02 b | 0.46 ± 0.01 a | 0.11 ± 0.00 c | 0.08 ± 0.00 d | |
Narirutin | 27.45 ± 0.38 b | 0.26 ± 0.02 f | 12.90 ± 0.69 d | 3.21 ± 0.02 e | 37.41 ± 0.49 a | 26.49 ± 0.21 c | |
Naringin | ND | 15.33 ± 1.02 a | 13.29 ± 1.00 b | 0.23 ± 0.01 d | 0.10 ± 0.01 e | 0.31 ± 0.01 c | |
Flavanone | Hesperidin | 5.38 ± 0.43 d | 16.21 ± 1.08 a | 14.35 ± 0.18 b | 1.81 ± 0.03 e | 7.04 ± 0.07 c | 5.79 ± 0.05 d |
Neohesperidin | 1.15 ± 0.01 d | 32.51 ± 21.66 a | 11.65 ± 0.80 b | 0.54 ± 0.03 e | 0.98 ± 0.01 d | 3.02 ± 0.06 c | |
Eridictyol | ND | ND | ND | ND | ND | ND | |
Didymin | 1.47 ± 0.04 a | 0.28 ± 0.02 e | 0.52 ± 0.12 d | 0.38 ± 0.03 d | 2.05 ± 0.01 c | 1.12 ± 0.00 b | |
Poncirin | ND | 3.67 ± 0.24 a | 0.69 ± 0.01 b | 0.16 ± 0.00 c | ND | ND | |
Naringenin | ND | ND | ND | 0.07 ± 0.00 | ND | ND | |
rhoifolin | ND | 0.24 ± 0.02 b | 1.71 ± 0.02 a | 0.16 ± 0.01 c | ND | ND | |
quercitrin | ND | 1.61 ± 0.11 a | 0.49 ± 0.01 b | ND | ND | ND | |
luteolin | ND | 0.03 ± 0.00 | 0.13 ± 0.00 | 0.04 ± 0.00 | ND | 0.02 ± 0.00 | |
Flavone | diosmetin | 0.18 ± 0.01 c | ND | ND | ND | 0.29 ± 0.01 b | 0.34 ± 0.00 a |
sinensetin | ND | 1.61 ± 0.11 a | ND | 1.30 ± 0.00 b | 0.05 ± 0.00 d | 0.10 ± 0.00 c | |
nobiletin | 0.31 ± 0.01 f | 11.90 ± 0.79 a | 1.17 ± 0.01 c | 2.67 ± 0.00 b | 0.46 ± 0.01 e | 0.98 ± 0.01 d | |
tangeretin | 0.17 ± 0.03 e | 10.21 ± 0.68 a | 0.60 ± 0.01 b | 0.28 ± 0.00 d | 0.18 ± 0.00 e | 0.48 ± 0.00 c |
Total Phenolic | Total Flavonoid | Synephrine | ABTS | DPPH | FRAP | |
---|---|---|---|---|---|---|
Total phenolic | 1.000 | |||||
Total flavonoid | 0.721 ** | 1.000 | ||||
Synephrine | −0.029 | 0.036 | 1.000 | |||
ABTS | 0.956 ** | 0.633 ** | −0.121 | 1.000 | ||
DPPH | 0.627 ** | 0.924 ** | 0.194 | 0.523 * | 1.000 | |
FRAP | 0.914 ** | 0.631 ** | −0.059 | 0.883 ** | 0.548 * | 1.000 |
Varieties | Common Name | Species Name | Abbreviation |
---|---|---|---|
Huyou | Grapefruit | Citrus paradisi Macf. Changshanhuyou | HY |
Tiancheng | Sweet orange | Citrus sinensis Osbeck | TC |
Zaoshuwenzhoumigan | Mandarin | Citrus unshiu var. praecox Tanka cv Miyagawa wase | ZS |
Wanshuwenzhoumigan | Mandarin | Citrus unshiu Marc. cv Yamada | WS |
Ougan | Mandarin | Citrus suavissima Hort. ex Tanaka | OG |
Ponkan | Mandarin | Citrus poonensis Hort. ex Tanaka | PG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Zhang, H.; Wei, X.; Ye, X.; Tian, J. Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China. Molecules 2022, 27, 5185. https://doi.org/10.3390/molecules27165185
Fang H, Zhang H, Wei X, Ye X, Tian J. Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China. Molecules. 2022; 27(16):5185. https://doi.org/10.3390/molecules27165185
Chicago/Turabian StyleFang, Haitian, Huiling Zhang, Xiaobo Wei, Xingqian Ye, and Jinhu Tian. 2022. "Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China" Molecules 27, no. 16: 5185. https://doi.org/10.3390/molecules27165185
APA StyleFang, H., Zhang, H., Wei, X., Ye, X., & Tian, J. (2022). Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China. Molecules, 27(16), 5185. https://doi.org/10.3390/molecules27165185