Sweet Corrosion Inhibition by CO2 Capture
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potentiodynamic Polarization Curves
2.2. Open Circuit Potential Measurements
2.3. Linear Polarization Resistance Measurements
2.4. Electrochemical Impedance Spectroscopy Measurements
2.5. CO2-Capture and Protection Mechanism
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahyarian, A.; Brown, B.; Nesic, S. The Unified Mechanism of Corrosion in Aqueous Weak Acids Solutions: A Review of the Recent Developments in Mechanistic Understandings of Mild Steel Corrosion in the Presence of Carboxylic Acids, Carbon Dioxide, and Hydrogen Sulfide. Corrosion 2020, 6, 268–278. [Google Scholar] [CrossRef]
- Kahyarian, A.; Nesic, S. On the mechanism of carbon dioxide corrosion of mild steel: Experimental investigation and mathematical modeling at elevated pressures and nonideal solutions. Corros. Sci. 2020, 173, 108719. [Google Scholar] [CrossRef]
- Wright, R.F.; Brand, E.R.; Ziomek-Moroz, M.; Tylczak, J.H.; Ohodnicki, P.R., Jr. Effect of HCO−3 on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines. Electrochim. Acta 2018, 290, 626–638. [Google Scholar] [CrossRef]
- Sk, M.H.; Abdullah, A.M.; Ko, M.; Ingham, B.; Laycock, N.; Arul, R.; Williams, D.E. Local supersaturation and the growth of protective scales during CO2 corrosion of steel: Effect of pH and solution flow. Corros. Sci. 2017, 126, 26–36. [Google Scholar] [CrossRef]
- Barker, R.; Burkle, D.; Charpentier, T.; Thompson, H.; Neville, A. A review of iron carbonate (FeCO3) formation in the oil and gas industry. Corros. Sci. 2018, 142, 312–341. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E. A Review on Ammonia Derivatives as Corrosion Inhibitors for Metals and Alloys. In Sustainable Ammonia Production, Green Energy and Technology; Inamuddin Boddula, R., Asiri, A.M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Godavarthi, S.; Porcayo-Calderon, J.; Casales-Diaz, M.; Vazquez-Velez, E.; Neri, A.; Martinez-Gomez, L. Electrochemical Analysis and Quantum Chemistry of Castor Oil-Based Corrosion Inhibitors. Curr. Anal. Chem. 2016, 12, 476–488. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Rivera-Muñoz, E.M.; Peza-Ledesma, C.; Casales-Diaz, M.; Martínez de la Escalera, L.M.; Canto, J.; Martinez-Gomez, L. Sustainable Development of Palm Oil: Synthesis and Electrochemical Performance of Corrosion Inhibitors. J. Electrochem. Sci. Technol. 2017, 8, 133–145. [Google Scholar] [CrossRef]
- Reyes-Dorantes, E.; Zuñiga-Díaz, J.; Quinto-Hernández, A.; Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.G.; Pedraza-Basulto, G.K.; Martínez-Gomez, L. Rice Bran as Source for the Synthesis of Imidazoline-type Inhibitors: Synthesis and Corrosion Performance. Int. J. Electrochem. Sci. 2018, 13, 101–118. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; El-Beltagi, H.S.; Mohamed Mohamed, M.E.; Kandeel, M.; Bakir, E.; Toghan, A.; Shalabi, K.; Tantawy, A.H.; Khalaf, M.M. Novel Natural Surfactant-Based Fatty Acids and Their Corrosion-Inhibitive Characteristics for Carbon Steel-Induced Sweet Corrosion: Detailed Practical and Computational Explorations. Front. Mater. 2022, 9, 843438. [Google Scholar] [CrossRef]
- Shahzad, K.; Sliem, M.H.; Shakoor, R.A.; Radwan, A.B.; Kahraman, R.; Umer, M.A.; Manzoor, U.; Abdullah, A.M. Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution. Sci. Rep. 2020, 10, 4314. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Lu, M.; Chai, C.; Wu, Y. Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution. Mater. Chem. Phys. 2007, 105, 331–340. [Google Scholar] [CrossRef]
- AI-Mayouf, A.M.; Al-Ameery, A.K.; Al-Suhybani, A.A. Inhibition of Type 304 Stainless Steel Corrosion in 2 M Sulfuric Acid by Some Benzoazoles-Time and Temperature Effects. Corrosion 2001, 57, 614–620. [Google Scholar] [CrossRef]
- Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros. Sci. 2003, 45, 33–58. [Google Scholar] [CrossRef]
- Allachi, H.; Chaouket, F.; Draoui, K. Corrosion inhibition of AA6060 aluminium alloy by lanthanide salts in chloride solution. J. Alloys Compd. 2009, 475, 300–303. [Google Scholar] [CrossRef]
- Mohammedi, D.; Ismail, F.; Rehamnia, R.; Bensalem, R.; Savadogo, O. Corrosion behaviour of steel in the presence of rare earth salts: Synergistic effect. Corros. Eng. Sci. Technol. 2015, 50, 633–638. [Google Scholar] [CrossRef]
- Yanhua, Z.; Jia, Z.; Yongsheng, Y.; Xianguang, Z. Research on anti-corrosion property of rare earth inhibitor for X70 steel. J. Rare Earths 2013, 31, 734–740. [Google Scholar]
- Bernal, S.; Botana, F.J.; Calvino, J.J.; Marcos, M.; Perez-Omil, J.A.; Vidal, H. Lanthanide salts as alternative corrosion inhibitors. J. Alloys Compd. 1995, 225, 638–641. [Google Scholar] [CrossRef]
- Davó, B.; de Damborenea, J.J. Use of rare earth salts as electrochemical corrosion inhibitors for an Al–Li–Cu (8090) alloy in 3.56% NaCl. Electrochim. Acta 2004, 49, 4957–4965. [Google Scholar] [CrossRef]
- Ho, D.; Brack, N.; Scully, J.; Markley, T.; Forsyth, M.; Hinton, B. Cerium Dibutylphosphate as a Corrosion Inhibitor for AA2024-T3 Aluminum Alloys. J. Electrochem. Soc. 2006, 153, B392–B401. [Google Scholar] [CrossRef]
- Allachi, H.; Chaouket, F.; Draoui, K. Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides. J. Alloys Compd. 2010, 491, 223–229. [Google Scholar] [CrossRef]
- Dastgheib, A.; Attar, M.M.; Zarebidaki, A. Evaluation of Corrosion Inhibition of Mild Steel in 3.5 wt% NaCl Solution by Cerium Nitrate. Met. Mater. Int. 2020, 26, 1634–1642. [Google Scholar] [CrossRef]
- Martinez de la Escalera, D.M.; Ramos-Hernandez, J.J.; Porcayo-Palafox, E.; Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.G.; Martinez-Gomez, L. Effect of Nd3+ Ion Concentration on the Corrosion Resistance of API X70 Steel in Chloride-Rich Environments. Adv. Mater. Sci. Eng. 2018, 2018, 9328317. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Ramos-Hernandez, J.J.; Porcayo-Palafox, E.; Martinez de la Escalera, L.M.; Canto, J.; Gonzalez-Rodriguez, J.G.; Martinez-Gomez, L. Sustainable Development of Corrosion Inhibitors from Electronic Scrap: Synthesis and Electrochemical Performance. Adv. Mater. Sci. Eng. 2019, 2019, 6753658. [Google Scholar] [CrossRef]
- Vazquez-Ramirez, R.; Salinas-Solano, G.; Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.G. Use of (Nd, Pr) Sulfates Obtained from Electronic Scrap as Corrosion Inhibitors for a C-Mn Steel in 3.5 NaCl. Int. J. Corros. Scale Inhib. 2021, 10, 602–617. [Google Scholar] [CrossRef]
- Chen, X.-B.; Cain, T.; Scully, J.R.; Birbilis, N. Technical Note: Experimental Survey of Corrosion Potentials for Rare Earth Metals Ce, Er, Gd, La, and Nd as a Function of pH and Chloride, Concentration. Corrosion 2013, 70, 323–328. [Google Scholar] [CrossRef]
- Arenas, M.A.; Conde, A.; de Damborenea, J.J. Cerium: A suitable green corrosion inhibitor for Tinplate. Corros. Sci. 2002, 44, 511–520. [Google Scholar] [CrossRef]
- Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Marcos, M.; Rodriguez-Chacon, M.A. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: A review. Corros. Sci. 1998, 40, 1803–1819. [Google Scholar] [CrossRef]
- El Miligy, A.A.; Geana, D.; Lorenz, W.J. A theoretical treatment of the kinetics of iron dissolution and passivation. Electrochim. Acta 1975, 20, 273–281. [Google Scholar] [CrossRef]
- Nam, N.D.; Somers, A.; Mathesh, M.; Seter, M.; Hinton, B.; Forsyth, M.; Tan, M.Y.J. The behaviour of praseodymium 4-hydroxycinnamate as an inhibitor for carbon dioxide corrosion and oxygen corrosion of steel in NaCl solutions. Corros. Sci. 2014, 80, 128–138. [Google Scholar] [CrossRef]
- Arenas, M.A.; de Damborenea, J.J. Growth mechanisms of cerium layers on galvanised steel. Electrochim. Acta 2003, 48, 3693–3698. [Google Scholar] [CrossRef]
- Amin, M.A.; Ahmed, M.A.; Arida, H.A.; Kandemirli, F.; Saracoglu, M.; Arslan, T.; Basaran, M.A. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series—Part III. Immersion time effects and theoretical studies. Corros. Sci. 2011, 53, 1895–1909. [Google Scholar] [CrossRef]
- Al-Otaibi, M.S.; Al-Mayouf, A.M.; Khan, M.; Mousa, A.A.; Al-Mazroa, S.A.; Alkhathlan, H.Z. Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab. J. Chem. 2014, 7, 340–346. [Google Scholar] [CrossRef]
- Bahgat Radwan, A.; Sliem, M.H.; Okonkwo, P.C.; Shibl, M.F.; Abdullah, A.M. Corrosion inhibition of API X120 steel in a highly aggressive medium using stearamidopropyl dimethylamine. J. Mol. Liq. 2017, 236, 220–231. [Google Scholar] [CrossRef]
- Usman, B.J.; Umoren, S.A.; Gasem, Z.M. Inhibition of API 5L X60 steel corrosion in CO2-saturated 3.5% NaCl solution by tannic acid and synergistic effect of KI additive. J. Mol. Liq. 2017, 237, 146–156. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Zhang, L.; Baia, Y.; Wang, Y.; Lu, M. Fundamental aspects of the corrosion of N80 steel in a formation water system under high CO2 partial pressure at 100 °C. RSC Adv. 2019, 9, 11641–11648. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds. J. Phys. Chem. B 2006, 110, 5515–5528. [Google Scholar] [CrossRef]
- Matter, E.A.; Kozhukharov, S.; Machkova, M.; Kozhukharov, V. Comparison between the inhibition efficiencies of Ce(III) and Ce(IV) ammonium nitrates against corrosion of AA2024 aluminum alloy in solutions of low chloride concentration. Corros. Sci. 2012, 62, 22–33. [Google Scholar] [CrossRef]
- Hu, T.; Shi, H.; Wei, T.; Liu, F.; Fan, S.; Han, E.-H. Cerium tartrate as a corrosion inhibitor for AA 2024-T3. Corros. Sci. 2015, 95, 152–161. [Google Scholar] [CrossRef]
- Zhang, L.J.; Zhang, Z.; Zhang, J.Q.; Cao, C.N. The study of the La(NO3)3 inhibition on X70 pipeline steel in 3.0(wt.%) NaCl solution. Mater. Corros. 2005, 56, 630–635. [Google Scholar] [CrossRef]
- Hassas, B.V.; Rezaee, M.; Pisupati, S.V. Precipitation of rare earth elements from acid mine drainage by CO2 mineralization process. Chem. Eng. J. 2020, 399, 125716. [Google Scholar] [CrossRef]
- Pei, S.-L.; Pan, S.-Y.; Li, Y.-M.; Chiang, P.-C. Environmental benefit assessment for the carbonation process of petroleum coke fly ash in a rotating packed bed. Environ. Sci. Technol. 2017, 51, 10674–10681. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Porcayo-Calderon, J.; Casales-Diaz, M.; Carrillo, I.; Canto, J.; Martinez de la Escalera, L.M.; Cuevas-Arteaga, C.; Regla, I.; Melgoza-Aleman, R.M.; Martinez-Gomez, L. Internal Corrosion Solution for Gathering Production Gas Pipelines Involving Palm Oil Amide Based Corrosion Inhibitors. Int. J. Electrochem. Sci. 2015, 10, 7166–7179. [Google Scholar]
- Li, X.; Peng, C.; Crawshaw, J.; Maitland, G.; Trusler, J.M. The pH of CO2-saturated aqueous NaCl and NaHCO3 solutions at temperatures between 308 K and 373 K at pressures up to 15 MPa. Fluid Phase Equilibria 2018, 458, 253–263. [Google Scholar] [CrossRef]
- Kim, P.; Anderko, A.; Navrotsky, A.; Riman, R.E. Trends in Structure and Thermodynamic Properties of Normal Rare Earth Carbonates and Rare Earth Hydroxycarbonates. Minerals 2018, 8, 106. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Brookins, D.G. Eh-pH Diagrams for Geochemistry; Springer: Berlin/Heidelberg, Germany, 1988; ISBN 978-3-642-73093-1. [Google Scholar] [CrossRef]
LaCl3 | Ecorr | ba | bc | Icorr |
---|---|---|---|---|
(mM) | (mV) | (mv/Dec) | (mV/Dec) | (mA/cm2) |
0 | −740 | 46 | 379 | 0.158 |
0.1 | −742 | 112 | 363 | 0.099 |
0.5 | −744 | 174 | 204 | 0.052 |
1.0 | −733 | 176 | 228 | 0.013 |
5.0 | −722 | 131 | 244 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcayo-Calderon, J.; Canto, J.; Martinez-de-la-Escalera, L.M.; Neri, A. Sweet Corrosion Inhibition by CO2 Capture. Molecules 2022, 27, 5209. https://doi.org/10.3390/molecules27165209
Porcayo-Calderon J, Canto J, Martinez-de-la-Escalera LM, Neri A. Sweet Corrosion Inhibition by CO2 Capture. Molecules. 2022; 27(16):5209. https://doi.org/10.3390/molecules27165209
Chicago/Turabian StylePorcayo-Calderon, Jesus, Jorge Canto, L. M. Martinez-de-la-Escalera, and Adrian Neri. 2022. "Sweet Corrosion Inhibition by CO2 Capture" Molecules 27, no. 16: 5209. https://doi.org/10.3390/molecules27165209
APA StylePorcayo-Calderon, J., Canto, J., Martinez-de-la-Escalera, L. M., & Neri, A. (2022). Sweet Corrosion Inhibition by CO2 Capture. Molecules, 27(16), 5209. https://doi.org/10.3390/molecules27165209