Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Instrumentation
2.2. Materials
2.3. Synthesis of the PEI-CQDs
2.4. Determination of Quantum Yield
2.5. Pretreatment and Detection of MTX Tablets
3. Results and Discussion
3.1. Structural Analysis of PEI-CQDs
3.2. Optical Properties
3.3. Analytical Performance of the PEI-CQDs for MTX
3.4. The Reaction Mechanism of PEI- CQDs with MTX
3.5. Selectivity of the PEI-CQDs for MTX Detection
3.6. MTX Detection in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, L.M.; Sun, Y.; Li, S.L.; Wang, X.L.; Hu, K.L.; Wang, L.R.; Liang, X.J.; Wu, Y. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 2014, 67, 508–513. [Google Scholar] [CrossRef]
- Chen, Z.G.; Qian, S.H.; Chen, X.; Gao, W.H.; Lin, Y.J. Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst 2012, 137, 4356–4361. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Burns, E.; Burkemper, N.M. Methotrexate use in allergic contact dermatitis: A retrospective study. Contact Dermat. 2018, 78, 194–198. [Google Scholar] [CrossRef]
- Barnhart, K.; Coutifaris, C.; Esposito, M. The pharmacology of methotrexate. Expert Opin. Pharmacother. 2001, 2, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.S.; Bukar, N.; Toulouse, J.L.; Pelechacz, D.; Robitaille, R.J.; Pelletier, N.; Masson, J.F. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosens. Bioelectron. 2015, 64, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, R.N.; Clarke, J.D.; Lake, A.D.; Canet, M.J.; Anumol, T.; Street, S.M.; Merrell, M.D.; Goedken, M.J.; Snyder, S.A.; Cherrington, N.J. Increased susceptibility to methotrexate-induced toxicity in nonalcoholic steatohepatitis. Toxicol. Sci. 2014, 142, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Isoardi, K.Z.; Harris, K.; Carmichael, K.E.; Dimeski, G.; Chan, B.S.H.; Page, C.B. Acute bone marrow suppression and gastrointestinal toxicity following acute oral methotrexate overdose. Clin. Toxicol. 2018, 56, 1204–1206. [Google Scholar] [CrossRef]
- Yin, J.; Shao, B.; Zhang, J.; Li, K.J. A preliminary study on the occurrence of cytostatic drugs in hospital effluents in beijing, China. Bull. Environ. Contam. Toxicol. 2010, 84, 39–45. [Google Scholar] [CrossRef]
- Wei, Y.L.; Luo, L.Q.; Ding, Y.P.; Si, X.J.; Ning, Y.Q. Highly sensitive determination of methotrexate at poly (L-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry 2014, 98, 70–75. [Google Scholar] [CrossRef]
- Ghadimi, H.; Nasiri-Tabrizi, B.; Nia, P.M.; Basirun, W.J.; Tehrani, R.M.A.; Lorestani, F. Nanocomposites of nitrogen-doped graphene decorated with a palladium silver bimetallic alloy for use as a biosensor for methotrexate detection. RSC Adv. 2015, 5, 99555–99565. [Google Scholar] [CrossRef]
- Salandari-Jolge, N.; Ensafi, A.A.; Rezaei, B. A novel three-dimensional network of CuCr2O4/CuO nanofibers for voltammetric determination of anticancer drug methotrexate. Anal. Bioanal. Chem. 2020, 412, 2443–2453. [Google Scholar] [CrossRef] [PubMed]
- Begas, E.; Papandreou, C.; Tsakalof, A.; Daliani, D.; Papatsibas, G.; Asprodini, E. Simple and reliable HPLC method for the mon itoring of methotrexate in osteosarcoma patients. J. Chromatogr. Sci. 2014, 52, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Takada, M.; Ohba, Y.; Kabashima, T.; Nakashima, K.; Wada, M. Simple Simultaneous Assay of Methotrexate and Non-Steroidal Anti-Inflammatory Drugs by HPLC. Chromatography 2020, 41, 79–84. [Google Scholar] [CrossRef]
- Zuben, E.S.V.; Oliveira, A.G.; Chorilli, M.; Scarpa, M.V. Development and validation of a rapid reverse-phase HPLC method for the determination of methotrexate from nanostructured liquid crystalline systems. Die Pharm. 2018, 73, 128–132. [Google Scholar] [CrossRef]
- Göksel, Y.; Zor, K.; Rindzevicius, T.; Als-Nielsen, B.E.T.; Schmiegelow, K.; Boisen, A. Quantification of Methotrexate in Human Serum Using SurfaceEnhanced Raman Scattering Toward Therapeutic Drug Monitoring. ACS Sens. 2021, 6, 2664–2673. [Google Scholar] [CrossRef]
- Song, Z.R.; Wang, Y.F.; Dong, Y.Q.; Xu, K.; Long, H.; Deng, C.; Yin, Y.M.; Eremin, S.A.; Meng, M.; Xi, R.M. A validated chemiluminescence immunoassay for methotrexate (MTX) and its application in a pharmacokinetic study. Anal. Methods 2016, 8, 162–170. [Google Scholar] [CrossRef]
- Janus, L.; Radwan-Pragowska, J.; Piatkowski, M.; Bogdal, D. Smart, Tunable CQDs with Antioxidant Properties for Biomedical Applications—Ecofriendly Synthesis and Characterization. Molecules 2020, 25, 736. [Google Scholar] [CrossRef]
- Molae, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2019, 196, 456–478. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.Q.; Dong, P.P.; Huang, J.F. A Mini Review on Carbon Quantum Dots: Preparation, Properties and Electrocatalytic Application. Front. Chem. 2019, 7, 671–678. [Google Scholar] [CrossRef]
- Ding, C.Q.; Zhu, A.W.; Tian, Y. Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging. Acc. Chem. Res. 2014, 47, 20–30. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, H.; Tang, J.B.; Deng, S.; Fang, Y.; Li, W.J.; Qu, M.H. Carbon dots doped with heteroatoms for fluorescent bioimaging: A review. Microchim. Acta 2017, 184, 343–368. [Google Scholar] [CrossRef]
- Ji, C.Y.; Zhou, Y.Q.; Leblanc, R.M.; Peng, Z.L. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens. 2020, 5, 2724–2741. [Google Scholar] [CrossRef] [PubMed]
- Devia, P.; Sainia, S.; Kim, K.H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 2019, 141, 111158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Hu, A.G. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef]
- Han, B.F.; Wang, W.X.; Wu, H.Y.; Fang, F.; Wang, N.Z.; Zhang, X.J.; Xu, S.K. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids Surf. B 2012, 100, 209–214. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Wang, R.X.; Li, H.; Shao, J.W.; Chi, Y.W.; Lin, X.M.; Chen, G.N. Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 2012, 50, 2810–2815. [Google Scholar] [CrossRef]
- Zeng, H.Y.; Li, L.; Ding, Y.P.; Zhuang, Q. Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 2018, 178, 879–885. [Google Scholar] [CrossRef]
- Huang, X.T.; Yang, C.L.; Chen, Y.X.; Zhu, Z.B.; Zhou, L.H. Cuttlefish ink-based N and S co-doped carbon quantum dots as a fluorescent sensor for highly sensitive and selective para-nitrophenoldetection. Anal. Methods 2021, 13, 5351–5359. [Google Scholar] [CrossRef]
- Yu, J.H.; Liu, H.; Wang, Y.T.; Li, J.H.; Wu, D.Z.; Wang, X.D. Fluorescent sensing system based on molecularly imprinted phasechange microcapsules and carbon quantum dots for high-efficient detection of tetracycline. J. Colloid Interface Sci. 2021, 599, 332–350. [Google Scholar] [CrossRef]
- Miao, X.; Qu, D.; Yang, D.X.; Nie, B.; Zhao, Y.K.; Fan, H.Y.; Sun, Z.C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740. [Google Scholar] [CrossRef]
- Gao, S.Y.; Wang, X.; Xu, N.; Lian, H.N.; Xu, L.; Zhang, W.Q.; Xu, C.Y. From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose 2021, 28, 1647–1661. [Google Scholar] [CrossRef]
- Zhao, Y.A.; Zou, S.Y.; Huo, D.Q.; Hou, C.J.; Yang, M.; Li, J.J.; Bian, M.H. Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Anal. Chim. Acta 2019, 1047, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.L.; Liao, Y.M.; Chiou, S.S.; Wu, S.M. On-line stacking capillary electrophoresis for analysis of methotrexate and its eight metabolites in whole blood. Electrophoresis 2008, 29, 3665–3673. [Google Scholar] [CrossRef]
- Mei, S.H.; Zhu, L.T.; Li, X.G.; Wang, J.Q.; Jiang, X.Y.; Chen, H.Y.; Huo, J.P.; Yang, L.; Lin, S.; Zhao, Z.G. UPLC-MS/MS Analysis of Methotrexate in Human Plasma and Comparison with the Fluorescence Polarization Immunoassay. Anal. Sci. 2017, 33, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Li, H.; Tian, Q.; Zhou, Y.; Yang, X.; Yu, Y.; Jiang, B.; Xu, Y.; Zhou, T. Electrochemical detection of methotrexate in serum sample based on the modified acetylene black sensor. Microchem. J. 2020, 6, 115058. [Google Scholar] [CrossRef]
- Chen, S.M.; Zhang, Z.J.; He, D.Y.; Hu, Y.F.; Zheng, H.Z. Flow-injection-electrochemical oxidation fluorimetry for determination of methotrexate. Luminescence 2007, 22, 338–342. [Google Scholar] [CrossRef]
- Tu, Y.J.; Wang, S.P.; Yuan, X.T.; Wei, Y.L.; Qin, K.H.; Zhang, Q.; Chen, X.M.; Ji, X. Novel fluorescent nitrogen, phosphorus-doped carbon dots derived from GanodermaLucidum for bioimaging and high selective two nitrophenols detection. Dyes Pigm. 2020, 178, 108316. [Google Scholar] [CrossRef]
- Zu, F.L.; Yan, F.Y.; Bai, Z.J.; Xu, J.X.; Wang, Y.Y.; Huang, Y.C.; Zhou, X.G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Wang, Y.H.; Bao, L.; Liu, Z.H.; Pang, D.W. Aptamer Biosensor Based on Fluorescence Resonance Energy Transfer from Upconverting Phosphors to Carbon Nanoparticles for Thrombin Detection in Human Plasma. Anal. Chem. 2011, 83, 8130–8137. [Google Scholar] [CrossRef]
Method | Linear Range | Detection Limit | References |
---|---|---|---|
N,S-CQDs | 0.4–41.3 μg/mL | 12 ng/mL | [32] |
CE | 0.5–10 μmol/L | 0.1 μmol/L | [33] |
SPRS | 0–150 μmol/L | 0.6 μmol/L | [15] |
UPLC-MS-MS | 1.0–100μmol/L | 0.16μmol/L | [34] |
chemiluminescence immunoassay | 4.3–392.8 ng/mL | 9.1 ng/mL | [16] |
Electrochemical sensor | 0.005–7 μmol/L | 3.07 nmol/L | [35] |
Flow-injection–electrochemical oxidation fluorimetry | 2.0 × 10−7–1.0 × 10−5 g/mL | 5.2 × 10−8 g/mL | [36] |
PEI-CQDs | 1–600 μmol/L | 0.33 μmol/L | This work |
Interfering Substance | Concentration (μmol/L) | Current Ratio % |
---|---|---|
NaCl | 2500 | 98.54 |
KNO3 | 5000 | 100.81 |
CH3COONH4 | 5000 | 100.81 |
K2SO4 | 2500 | 100.31 |
Glycine | 2500 | 101.74 |
Phenylalanine | 2500 | 102.52 |
Histidine | 2500 | 103.18 |
Lysine | 2500 | 104.33 |
Ascorbic acid | 5000 | 101.99 |
No. | Detected (μmol/L) | Detected (mg/Piece) | Labeled (mg/Piece) | Labeled Quantity (%) | Average (%) | RSD (%) |
---|---|---|---|---|---|---|
1 | 5.86 | 2.44 | 2.5 | 97.6 | 98.2 | 4.4 |
2 | 6.04 | 2.51 | 100.4 | |||
3 | 6.23 | 2.59 | 103.6 | |||
4 | 5.52 | 2.30 | 92.0 | |||
5 | 5.83 | 2.43 | 97.2 |
No. | Sample (μmol/L) | Added (μmol/L) | Total (μmol/L) | Recovery (%) | Average (%) | RSD (%) |
---|---|---|---|---|---|---|
1 | 5.90 | 100 | 107.9 | 102.0 | 100.9 | 0.9 |
2 | 106.2 | 100.3 | ||||
3 | 106.8 | 100.9 | ||||
4 | 107.5 | 101.6 | ||||
5 | 105.6 | 99.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, X.; Han, M.; Zeng, H.; Wei, X. Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection. Molecules 2022, 27, 5254. https://doi.org/10.3390/molecules27165254
Si X, Han M, Zeng H, Wei X. Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection. Molecules. 2022; 27(16):5254. https://doi.org/10.3390/molecules27165254
Chicago/Turabian StyleSi, Xiaojing, Mei Han, Hongyan Zeng, and Xiaoyi Wei. 2022. "Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection" Molecules 27, no. 16: 5254. https://doi.org/10.3390/molecules27165254
APA StyleSi, X., Han, M., Zeng, H., & Wei, X. (2022). Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection. Molecules, 27(16), 5254. https://doi.org/10.3390/molecules27165254