Elucidation of Olive Oil Oxidation Mechanisms by Analysis of Triacylglycerol Hydroperoxide Isomers Using LC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TG 18:1_18:1_18:2;OOH and TG 18:1_18:1_18:1;OOH Standards
2.3. MS/MS and LC-MS/MS Analysis of TGOOH Isomers
2.4. Oxidation of EVOO
3. Results and Discussion
3.1. Target TGOOH to Determine EVOO Oxidation Mechanisms
3.2. Analysis of TG 18:1_18:1_18:2;OOH Isomers in Fresh, Thermally Oxidized, and Photo-Oxidized EVOO
3.3. MS/MS and LC-MS/MS Analysis of TG 18:1_18:1_18:1;OOH Standards
3.4. Analysis of TG 18:1_18:1_18:1;OOH Isomers in Fresh, Thermally Oxidized, and Photo-Oxidized EVOO
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
MeO-AMVN | 2,2′-azobis-(4-methoxy-2,4-dimethylvaleronitrile) |
CID | collision induced dissociation |
ESI | electrospray ionization |
EVOO | extra virgin olive oil |
LED | light-emitting diode |
LOOH | lipid hydroperoxide |
MRM | multiple reaction monitoring |
MxP | 2-methoxypropene |
1O2 | singlet oxygen |
TG | triacylglycerol |
TGOOH | triacylglycerol hydroperoxide |
References
- Kiritsakis, A.; Dugan, L.R. Studies in photooxidation of olive oil. J. Am. Oil Chem. Soc. 1985, 62, 892–896. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M. Simultaneous HPLC determination of tocopherols, carotenoids, and chlorophylls for monitoring their effect on virgin olive oil oxidation. J. Agric. Food Chem. 1998, 46, 5132–5138. [Google Scholar] [CrossRef]
- Aparicio, R.; Roda, L.; Albi, M.A.; Gutiérrez, F. Effect of various compounds on virgin olive oil stability measured by rancimat. J. Agric. Food Chem. 1999, 47, 4150–4155. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.T.; Przybylski, R. Olive Oil Oxidation. In Handbook of Olive Oil; Harwood, J., Aparicio, R., Eds.; Springer: Boston, MA, USA, 2000; Volume 13, pp. 459–490. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M. Pigments in Greek virgin olive oils: Occurrence and levels. J. Sci. Food Agric. 2001, 81, 640–647. [Google Scholar] [CrossRef]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventós, R.M.; De la Torre, M.C.; López-Sabater, M.C. The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem. 2002, 78, 207–211. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M. Stability of virgin olive oil. 1. Autoxidation studies. J. Agric. Food Chem. 2002, 50, 716–721. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M. Stability of virgin olive oil. 2. Photo-oxidation studies. J. Agric. Food Chem. 2002, 50, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Hrncirik, K.; Fritsche, S. Relation between the endogenous antioxidant system and the quality of extra virgin olive oil under accelerated storage conditions. J. Agric. Food Chem. 2005, 53, 2103–2110. [Google Scholar] [CrossRef]
- Tena, N.; García-González, D.L.; Aparicio, R. Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. J. Agric. Food Chem. 2009, 57, 10505–10511. [Google Scholar] [CrossRef]
- Blasi, F.; Rocchetti, G.; Montesano, D.; Lucini, L.; Chiodelli, G.; Ghisoni, S.; Baccolo, G.; Simonetti, M.S.; Cossignani, L. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analysis and metabolomic approach. Food Res. Int. 2018, 105, 507–516. [Google Scholar] [CrossRef]
- Kishimoto, N. Influence of exposure to sunlight on the oxidative deterioration of extra virgin olive oil during storage in glass bottles. Food Sci. Technol. Res. 2019, 25, 539–544. [Google Scholar] [CrossRef]
- Esposto, S.; Taticchi, A.; Servili, M.; Urbani, S.; Sordini, B.; Veneziani, G.; Daidone, L.; Selvaggini, R. Overall quality evolution of extra virgin olive oil exposed to light for 10 months in different containers. Food Chem. 2021, 351, 129297. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; Salvador, M.D.; Fregapane, G. Evolution of the oxidation process in olive oil triacylglycerol under accelerated storage conditions (40–60 °C). J. Am. Oil Chem. Soc. 2004, 81, 177–184. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid oxidation. Prog. Lipid Res. 1980, 19, 1–22. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 1985, 23, 197–221. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Gollmer, A.; Regensburger, J.; Maisch, T.; Bäumler, W. Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids. Phys. Chem. Chem. Phys. 2013, 15, 11386–11393. [Google Scholar] [CrossRef]
- Endo, Y.; Usuki, R.; Kaneda, T. Prooxident activities of chlorophylls and their decomposition products on the photooxidation of methyl linoleate. J. Am. Oil Chem. Soc. 1984, 61, 781–784. [Google Scholar] [CrossRef]
- Endo, Y.; Usuki, R.; Kaneda, T. Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. I. Comparison of the inhibitory effects. J. Am. Oil Chem. Soc. 1985, 62, 1375–1378. [Google Scholar] [CrossRef]
- Tanno, R.; Kato, S.; Shimizu, N.; Ito, J.; Sato, S.; Ogura, Y.; Sakaino, M.; Sano, T.; Eitsuka, T.; Kuwahara, S.; et al. Analysis of oxidation products of α-tocopherol in extra virgin olive oil using liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 306, 125582. [Google Scholar] [CrossRef]
- Yang, W.T.; Lee, J.H.; Min, D.B. Quenching mechanisms and kinetics of α-tocopherol and β-carotene on the photosensitizing effect of synthetic food colorant FD&C Red No. 3. J. Food Sci. 2006, 67, 507–510. [Google Scholar]
- Hui, S.-P.; Sakurai, T.; Takeda, S.; Jin, S.; Fuda, H.; Kurosawa, T.; Chiba, H. Analysis of triacylglycerol hydroperoxides in human lipoproteins by Orbitrap mass spectrometer. Anal. Bioanal. Chem. 2013, 405, 4981–4987. [Google Scholar] [CrossRef] [PubMed]
- Grüneis, V.; Fruehwirth, S.; Zehl, M.; Ortner, J.; Schamann, A.; König, J.; Pignitter, M. Simultaneous analysis of epoxidized and hydroperoxidized triacylglycerols in canola oil and margarine by LC-MS. J. Agric. Food Chem. 2019, 67, 10174–10184. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, F.; Destaillats, F.; Skibsted, L.H.; Dionisi, F. Structural analysis of hydroperoxy- and epoxy-triacylglycerols by liquid chromatography mass spectrometry. Chem. Phys. Lipids 2004, 131, 41–49. [Google Scholar] [CrossRef]
- Zeb, A.; Murkovic, M. Carotenoids and triacylglycerols interactions during thermal oxidation of refined olive oil. Food Chem. 2011, 127, 1584–1593. [Google Scholar] [CrossRef]
- Zeb, A. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography-mass spectrometry. Chem. Phys. Lipids 2012, 165, 608–614. [Google Scholar] [CrossRef]
- Kato, S.; Nakagawa, K.; Suzuki, Y.; Asai, A.; Nagao, M.; Nagashima, K.; Oikawa, S.; Miyazawa, T. Liquid chromatography-tandem mass spectrometry determination of human plasma 1-palmitoyl-2-hydroperoxyoctadecadienoyl-phosphatidylcholine isomers via promotion of sodium adduct formation. Anal. Biochem. 2015, 471, 51–60. [Google Scholar] [CrossRef]
- Kato, S.; Shimizu, N.; Hanzawa, Y.; Otoki, Y.; Ito, J.; Kimura, F.; Takekoshi, S.; Sakaino, M.; Sano, T.; Eitsuka, T.; et al. Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography-tandem mass spectrometry. npj Sci. Food 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Kato, S.; Nakagawa, K.; Suzuki, Y.; Suzuki, K.; Mizuochi, S.; Miyazawa, T. Preparation of 13 or 9-hydroperoxy-9Z,11E (9E,11E) or 10E,12Z (10E,12E)-octadecadienoic phosphatidylcholine hydroperoxide. J. Oleo Sci. 2014, 63, 431–437. [Google Scholar] [CrossRef]
- Bhosle, B.M.; Subramanian, R. New approaches in deacidification of edible oils-a review. J. Food Eng. 2005, 69, 481–494. [Google Scholar] [CrossRef]
- Milne, G.L.; Seal, J.R.; Havrilla, C.M.; Wijtmans, M.; Porter, N.A. Identification and analysis of products formed from phospholipids in the free radical oxidation of human low density lipoproteins. J. Lipid Res. 2005, 46, 307–319. [Google Scholar] [CrossRef]
- Kato, S.; Shimizu, N.; Ogura, Y.; Otoki, Y.; Ito, J.; Sakaino, M.; Sano, T.; Kuwahara, S.; Takekoshi, S.; Imagi, J.; et al. Structural analysis of lipid hydroperoxides using mass spectrometry with alkali metals. J. Am. Soc. Mass Spectrom. 2021, 32, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N. Secondary products of lipid oxidation. Chem. Phys. Lipids 1987, 44, 73–85. [Google Scholar] [CrossRef]
Molecular Species Level | Hydroperoxyl Group Positional Isomer Level | EZ Isomer Level of Hydrperoxy Fatty Acid | Fatty Acid Positional Isomer Level | Causative Oxidation Mechanism | Compound Number (Figure 2, Figure 3 and Figure 4) | |
---|---|---|---|---|---|---|
TGOOH | TG 18:1_18:1_18:2;OOH | TG 18:1_18:1_18:2;9OOH | TG 18:1_18:1_18:2(10E,12Z);9OOH | TG 18:1_18:1(sn-2)_18:2(10E,12Z);9OOH | Radical and 1O2 | 1 |
TG 18:1_18:2(10E,12Z);9OOH(sn-2)_18:1 | Radical and 1O2 | 2 | ||||
TG 18:1_18:1_18:2(10E,12E);9OOH | TG 18:1_18:1(sn-2)_18:2(10E,12E);9OOH | Radical | 3 | |||
TG 18:1_18:2(10E,12E);9OOH(sn-2)_18:1 | Radical | 4 | ||||
TG 18:1_18:1_18:2;10OOH | TG 18:1_18:1_18:2(8E,12Z);10OOH | TG 18:1_18:1(sn-2)_18:2(8E,12Z);10OOH | 1O2 | 5 | ||
TG 18:1_18:2(8E,12Z);10OOH(sn-2)_18:1 | 1O2 | 6 | ||||
TG 18:1_18:1_18:2;12OOH | TG 18:1_18:1_18:2(9Z,13E);12OOH | TG 18:1_18:1(sn-2)_18:2(9Z,13E);12OOH | 1O2 | 7 | ||
TG 18:1_18:2(9Z,13E);12OOH(sn-2)_18:1 | 1O2 | 8 | ||||
TG 18:1_18:1_18:2;13OOH | TG 18:1_18:1_18:2(9Z,11E);13OOH | TG 18:1_18:1(sn-2)_18:2(9Z,11E);13OOH | Radical and 1O2 | 9 | ||
TG 18:1_18:2(9Z,11E);13OOH(sn-2)_18:1 | Radical and 1O2 | 10 | ||||
TG 18:1_18:1_18:2(9E,11E);13OOH | TG 18:1_18:1(sn-2)_18:2(9E,11E);13OOH | Radical | 11 | |||
TG 18:1_18:2(9E,11E);13OOH(sn-2)_18:1 | Radical | 12 | ||||
TG 18:1_18:1_18:1;OOH | TG 18:1_18:1_18:1;8OOH | TG 18:1_18:1_18:1(9Z);8OOH | TG 18:1_18:1(sn-2)_18:1(9Z);8OOH | Radical | 13 | |
TG 18:1_18:1(9Z);8OOH(sn-2)_18:1 | Radical | 14 | ||||
TG 18:1_18:1_18:1(9E);8OOH | TG 18:1_18:1(sn-2)_18:1(9E);8OOH | Radical | 15 | |||
TG 18:1_18:1(9E);8OOH(sn-2)_18:1 | Radical | 16 | ||||
TG 18:1_18:1_18:1;9OOH | TG 18:1_18:1_18:1(10E);9OOH | TG 18:1_18:1(sn-2)_18:1(10E);9OOH | Radical and 1O2 | 17 | ||
TG 18:1_18:1(10E);9OOH(sn-2)_18:1 | Radical and 1O2 | 18 | ||||
TG 18:1_18:1_18:1;10OOH | TG 18:1_18:1_18:1(8E);10OOH | TG 18:1_18:1(sn-2)_18:1(8E);10OOH | Radical and 1O2 | 19 | ||
TG 18:1_18:1(8E);10OOH(sn-2)_18:1 | Radical and 1O2 | 20 | ||||
TG 18:1_18:1_18:1;11OOH | TG 18:1_18:1_18:1(9Z);11OOH | TG 18:1_18:1(sn-2)_18:1(9Z);11OOH | Radical | 21 | ||
TG 18:1_18:1(9Z);11OOH(sn-2)_18:1 | Radical | 22 | ||||
TG 18:1_18:1_18:1(9E);11OOH | TG 18:1_18:1(sn-2)_18:1(9E);11OOH | Radical | 23 | |||
TG 18:1_18:1(9E);11OOH(sn-2)_18:1 | Radical | 24 | ||||
Fatty Acid Methyl Ester Hydroperoxide | FA 18:2;1OMe,OOH | FA 18:2;1OMe,9OOH | FA 18:2(10E,12Z);1OMe,9OOH | |||
FA 18:2(10E,12E);1OMe,9OOH | ||||||
FA 18:2;1OMe,13OOH | FA 18:2(9Z,11E);1OMe,13OOH | |||||
FA 18:2(9E,11E);1OMe,13OOH | ||||||
FA 18:1;1OMe,OOH | FA 18:1;1OMe,8OOH | FA 18:1(9Z);1OMe,8OOH | ||||
FA 18:1(9E);1OMe,8OOH | ||||||
FA 18:1;1OMe,9OOH | FA 18:1(10E);1OMe,9OOH | |||||
FA 18:1;1OMe,10OOH | FA 18:1(8E);1OMe,10OOH | |||||
FA 18:1;1OMe,11OOH | FA 18:1(9Z);1OMe,11OOH | |||||
FA 18:1(9E);1OMe,11OOH | ||||||
TG | TG 18:1_18:1_18:2 | TG 18:1_18:1(sn-2)_18:2 | ||||
TG 18:1_18:1(sn-2)_18:2 | ||||||
TG 18:1_18:1_18:1 | ||||||
FA | FA 18:1 | |||||
FA 18:2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, H.; Kato, S.; Shimizu, N.; Otoki, Y.; Ito, J.; Sakaino, M.; Sano, T.; Imagi, J.; Nakagawa, K. Elucidation of Olive Oil Oxidation Mechanisms by Analysis of Triacylglycerol Hydroperoxide Isomers Using LC-MS/MS. Molecules 2022, 27, 5282. https://doi.org/10.3390/molecules27165282
Takahashi H, Kato S, Shimizu N, Otoki Y, Ito J, Sakaino M, Sano T, Imagi J, Nakagawa K. Elucidation of Olive Oil Oxidation Mechanisms by Analysis of Triacylglycerol Hydroperoxide Isomers Using LC-MS/MS. Molecules. 2022; 27(16):5282. https://doi.org/10.3390/molecules27165282
Chicago/Turabian StyleTakahashi, Hayato, Shunji Kato, Naoki Shimizu, Yurika Otoki, Junya Ito, Masayoshi Sakaino, Takashi Sano, Jun Imagi, and Kiyotaka Nakagawa. 2022. "Elucidation of Olive Oil Oxidation Mechanisms by Analysis of Triacylglycerol Hydroperoxide Isomers Using LC-MS/MS" Molecules 27, no. 16: 5282. https://doi.org/10.3390/molecules27165282
APA StyleTakahashi, H., Kato, S., Shimizu, N., Otoki, Y., Ito, J., Sakaino, M., Sano, T., Imagi, J., & Nakagawa, K. (2022). Elucidation of Olive Oil Oxidation Mechanisms by Analysis of Triacylglycerol Hydroperoxide Isomers Using LC-MS/MS. Molecules, 27(16), 5282. https://doi.org/10.3390/molecules27165282