Effects of Polysaccharide Concentrations on the Formation and Physical Properties of Emulsion-Templated Oleogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructures and Particle Size of Emulsions
2.2. Characterization of Rheological Properties of Emulsions
2.3. Rheological Characterization of Oleogels
2.4. Oil Loss
2.5. XRD Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation for Samples
3.2.1. Preparation of Oleogels with Different HPMC Concentrations
3.2.2. Preparation of Oleogels with Different PC Concentrations
3.3. Determination of Particle Size of Emulsions
3.4. Microstructure of Emulsions
3.5. Rheological Measurements
3.6. Determination of Oil Loss
3.7. XRD Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasi, F.; Lamendola, C.; Mclaughlin, T.; Reaven, G.M. Relationship between obesity, insulin resistance, and coronary heart disease risk. J. Am. Coll. Cardiol. 2002, 40, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, H.; Kasai, M.; Takeuchi, H.; Nakamura, M.; Okazaki, M.; Kondo, K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J. Nutr. 2001, 131, 2853–2859. [Google Scholar] [CrossRef] [Green Version]
- Doan, C.D.; Tavernier, I.; Okuro, P.K.; Dewettinck, K. Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry. Innov. Food Sci. Emerg. Technol. 2018, 45, 42–52. [Google Scholar] [CrossRef]
- Silva, T.L.T.; Arellano, D.B.; Martini, S. Physical properties of candelilla wax, monoacylglycerols, and fully hydrogenated oil oleogels. J. Am. Oil Chem. Soc. 2018, 95, 797–811. [Google Scholar] [CrossRef]
- Gaudino, N.; Ghazani, S.M.; Clark, S.; Marangoni, A.G.; Acevedo, N.C. Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Res. Int. 2019, 116, 79–89. [Google Scholar] [CrossRef]
- Willett, S.A.; Akoh, C.C. Encapsulation of menhaden oil structured lipid oleogels in alginate microparticles. LWT 2019, 116, 108566. [Google Scholar] [CrossRef]
- Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015, 519, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.L.; Sun, Y.G.; Ma, L.L.; Yang, X.Q.; Guo, J.; Yin, S.W. Responsive emulsion gels with tunable properties formed by self-assembled nanofibrils of natural saponin glycyrrhizic acid for oil structuring. J. Agric. Food Chem. 2017, 65, 2394–2405. [Google Scholar] [CrossRef]
- Huang, Y.; He, M.; Lu, A.; Zhou, W.Z.; Stoyanov, S.D.; Pelan, E.G.; Zhang, L.N. Hydrophobic modification of chitin whisker and its potential application in structuring oil. Langmuir 2015, 31, 1641–1648. [Google Scholar] [CrossRef]
- Chen, K.L.; Zhang, H. Fabrication of oleogels via a facile method by oil absorption in the aerogel templates of protein-polysaccharide conjugates. Acs Appl. Mater. Interfaces 2020, 12, 7795–7804. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.S.; Cludts, N.; Lewille, B.; Dewettinck, K. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir 2014, 31, 2065–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh, L.; Abdolmaleki, K.; Nayebzadeh, K.; Hosseini, S.M. Oleogel fabrication based on sodium caseinate, hydroxypropyl methylcellulose, and beeswax: Effect of concentration, oleogelation method, and their optimization. J. Am. Oil Chem. Soc. 2020, 97, 12341. [Google Scholar] [CrossRef]
- Mohammad, H.N.; Jafar, M.M.; Jamshid, F.; Azizollaah, Z. Developing and optimizing low-saturated oleogel shortening based on ethyl cellulose and hydroxypropyl methyl cellulose biopolymers. Food Chem. 2021, 369, 130963. [Google Scholar]
- Jiang, Q.B.; Du, L.Y.; Li, S.Y.; Liu, Y.F.; Meng, Z. Polysaccharide-stabilized aqueous foams to fabricate highly oil-absorbing cryogels: Application and formation process for preparation of edible oleogels. Food Hydrocoll. 2021, 120, 10691. [Google Scholar] [CrossRef]
- Espert, M.; Salvador, A.; Sanz, T. Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners. Food Hydrocoll. 2020, 109, 106085. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Guelseren, I.; Corredig, M. Interactions between polyglycerol polyricinoleate (PGPR) and pectins at the oil–water interface and their influence on the stability of water-in-oil emulsions. Food Hydrocoll. 2014, 34, 154–160. [Google Scholar] [CrossRef]
- Soltani, S.; Madadlou, A. Two-step sequential cross-linking of sugar beet pectin for transforming zein nanoparticle-based Pickering emulsions to emulgels. Carbohydr. Polym. 2016, 136, 738–743. [Google Scholar] [CrossRef]
- Yanai, R.; Kawaguchi, M. Effect of hydrophobic modification of hydroxypropyl methylcellulose on silicone oil emulsions. J. Dispers. Sci. Technol. 2017, 38, 40–45. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Ying, G.; Yong, W.; Liu, Y. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocoll. 2017, 77, 17–29. [Google Scholar] [CrossRef]
- Farhad, A.; Lingyun, C. Complexation of nanofibrillated egg white protein and low methoxy pectin improves microstructure, stability, and rheology of oil-in-water emulsions. Food Hydrocoll. 2021, 124, 107262. [Google Scholar]
- Chen, Q.H.; Zheng, J.; Xu, Y.T.; Yin, S.W.; Liu, F.; Tang, C.H. Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocoll. 2018, 75, 125–130. [Google Scholar] [CrossRef]
- Kim, H.S.; Mason, T.G. Advances and challenges in the rheology of concentrated emulsions and nanoemulsions. Adv. Colloid Interface Sci. 2017, 247, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Niu, D.; Zhang, H.; Chang, C.; Gu, L.; Su, Y.; Yang, Y. Ovalbumin/gum arabic-stabilized emulsion: Rheology, emulsion characteristics, and raman spectroscopic study. Food Hydrocoll. 2016, 52, 607–614. [Google Scholar] [CrossRef]
- Mert, B.; Vilgis, T.A. Hydrocolloid coated oleosomes for development of oleogels. Food Hydrocoll. 2021, 119, 106832. [Google Scholar] [CrossRef]
- Anvari, M.; Joyner, H.S. Effect of formulation on structure-function relationships of concentrated emulsions: Rheological, tribological, and microstructural characterization. Food Hydrocoll. 2017, 72, 11–26. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.Y.; Guo, Y.; Wang, Y.; Liu, Y.F. Physical properties, microstructure, intermolecular forces, and oxidation stability of soybean oil oleogels structured by different cellulose ethers. Eur. J. Lipid Sci. Technol. 2018, 120, 1700287. [Google Scholar] [CrossRef]
- Huang, H.D.; Hallinan, R.; Maleky, F. Comparison of different oleogels in processed cheese products formulation. Int. J. Food Sci. Technol. 2018, 53, 2525–2534. [Google Scholar] [CrossRef]
- Luo, S.Z.; Hu, X.F.; Jia, Y.J.; Pan, L.H.; Zheng, Z.; Zhao, Y.Y.; Mu, D.D.; Zhong, X.Y.; Jiang, S.T. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocoll. 2019, 95, 76–87. [Google Scholar] [CrossRef]
- Tavernier, I.; Patel, A.R.; Van der Meeren, P.; Dewettinck, K. Emulsion-templated liquid oil structuring with soy protein and soy protein: Kappa-carrageenan complexes. Food Hydrocoll. 2017, 65, 107–120. [Google Scholar] [CrossRef]
- Blake, A.I.; Marangoni, A.G. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 2014, 91, 885–903. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B. Utilization of beeswax oleogel-shortening mixtures in gluten-free bakery products. J. Am. Oil Chem. Soc. 2019, 96, 545–554. [Google Scholar] [CrossRef]
- Mert, B.; Tekin, A.; Demirkesen, I.; Kocak, G. Production of microfluidized wheat bran fibers and evaluation as an ingredient in reduced flour bakery product. Food Bioprocess Technol. 2014, 7, 2889–2901. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem. 2016, 199, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Johnsy, G.; Ranganathan, K.; Vallayil, A.S.; Karna, V.R.; Ramalingam, R.; Virat, A.; Shanmugam, N. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2014, 105, 285–292. [Google Scholar]
- Fahad, M.; Khan, M.A.; Gilbert, M. Investigation of thermal gel formation of methylcellulose in glycols using DSC and XRD. Gels 2021, 7, 205. [Google Scholar] [CrossRef]
- McClements, J.D. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci. 2015, 219, 27–53. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.Y.; Guo, Y.; Wang, Y.; Liu, Y.F. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chem. 2018, 246, 137–149. [Google Scholar] [CrossRef]
- Kanagaratnam, S.; Hoque, M.E.; Sahri, M.; Spowage, A. Investigating the effect of deforming temperature on the oil-binding capacity of palm oil based shortening. J. Food Eng. 2013, 118, 90–99. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Bai, X. Effects of Polysaccharide Concentrations on the Formation and Physical Properties of Emulsion-Templated Oleogels. Molecules 2022, 27, 5391. https://doi.org/10.3390/molecules27175391
Jiang Z, Bai X. Effects of Polysaccharide Concentrations on the Formation and Physical Properties of Emulsion-Templated Oleogels. Molecules. 2022; 27(17):5391. https://doi.org/10.3390/molecules27175391
Chicago/Turabian StyleJiang, Zongbo, and Xinpeng Bai. 2022. "Effects of Polysaccharide Concentrations on the Formation and Physical Properties of Emulsion-Templated Oleogels" Molecules 27, no. 17: 5391. https://doi.org/10.3390/molecules27175391
APA StyleJiang, Z., & Bai, X. (2022). Effects of Polysaccharide Concentrations on the Formation and Physical Properties of Emulsion-Templated Oleogels. Molecules, 27(17), 5391. https://doi.org/10.3390/molecules27175391