Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit
Abstract
:1. Introduction
2. Results and Discussion
2.1. Natural Reagent Ability to Associate with Metal Ions
2.2. Optimization of Ultrasound-Assisted One-Pot Cloud Point Extraction for Quantification of Iron
2.2.1. Amount of Dipterocarpus intricatus Dyer Fruit Powder
2.2.2. Effect of pH
2.2.3. Effect of Buffer Concentration and Volume
2.2.4. Effect of Triton X-114 Concentration
2.2.5. Effect of Mixing Period
2.2.6. Effect of Temperature
2.2.7. Effect of Ultrasonic Irradiation
2.2.8. Centrifugation Speed and Time
2.2.9. Study of the Dissolution Solvent
2.2.10. Study of the Filtering Process
2.2.11. Study of the Elution Solvent
2.3. Analytical Performance of the Proposed Method
2.4. Interference Study
2.5. Application to Local Vegetable Samples
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Instruments
3.3. Dipterocarpus intricatus Dyer Fruit Reagent Powder Preparation
3.4. Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination
3.5. Vegetable Samples
3.6. Standard FAAS Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Saeidi, M.; Aboutalebi, R.; Darehkordi, A. A New Spectrophotometric Reagent for Fe(III): 2-(2,3-Dihydroxy-4-oxocyclobut-2-enylidene) Hydrozinecarbothiamide and Its Application in Real Samples. J. Chem. 2013, 2013, 628253. [Google Scholar] [CrossRef]
- Woods, J.; Mellon, M. Thiocyanate Method for Iron: A Spectrophotometric Study. Ind. Eng. Chem. Anal. Ed. 1941, 13, 551–554. [Google Scholar] [CrossRef]
- Elsuccary, S.A.A.; Salem, A.A. Novel flow injection analysis methods for the determination of total iron in blood serum and water. Talanta 2015, 131, 108–115. [Google Scholar] [CrossRef]
- Jamali, M.R.; Tavakoli, M.; Rahnama, R. Development of ionic liquid-based in situ solvent formation microextraction for iron speciation and determination in water and food samples. J. Mol. Liq. 2016, 216, 666–670. [Google Scholar] [CrossRef]
- Koronkiewicz, S. Photometric Determination of Iron in Pharmaceutical Formulations Using Double-Beam Direct Injection Flow Detector. Molecules 2021, 26, 4498. [Google Scholar] [CrossRef]
- Phansi, P.; Danchana, K.; Ferreira, S.L.C.; Cerdà, V. Multisyringe flow injection analysis (MSFIA) for the automatic determination of total iron in wines. Food Chem. 2018, 277, 261–266. [Google Scholar] [CrossRef]
- Nurchi, V.; Cappai, R.; Spano, N.; Sanna, G. A Friendly Complexing Agent for Spectrophotometric Determination of Total Iron. Molecules 2021, 26, 3071. [Google Scholar] [CrossRef]
- Miranda, J.L.A.; Mesquita, R.B.R.; Nunes, A.; Rangel, M.; Rangel, A.O. Determination of iron(III) in water samples by microsequential injection solid phase spectrometry using an hexadentate 3-hydroxy-4-pyridinone chelator as reagent. Talanta 2018, 191, 409–414. [Google Scholar] [CrossRef]
- de la Guardia, M.; Garrigues, S. Chapter 1 Past, Present and Future of Green Analytical Chemistry. In Challenges in Green Analytical Chemistry; The Royal Society of Chemistry: London, UK, 2020; pp. 1–18. [Google Scholar]
- Armenta, S.; Garrigues, S.; de la Guardia, M.; Esteve-Turrillas, F.A. Green Analytical Chemistry. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 356–361. [Google Scholar]
- Supharoek, S.-A.; Ponhong, K.; Grudpan, K. A green analytical method for benzoyl peroxide determination by a sequential injection spectrophotometry using natural reagent extracts from pumpkin. Talanta 2017, 171, 236–241. [Google Scholar] [CrossRef]
- Supharoek, S.-A.; Ponhong, K.; Siriangkhawut, W.; Grudpan, K. Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample. J. Food Drug Anal. 2018, 26, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Tontrong, S.; Khonyoung, S.; Jakmunee, J. Flow injection spectrophotometry using natural reagent from Morinda citrifolia root for determination of aluminium in tea. Food Chem. 2012, 132, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Siriangkhawut, W.; Khanhuathon, Y.; Chantiratikul, P.; Ponhong, K.; Grudpan, K. A Green Sequential Injection Spectrophotometric Approach Using Natural Reagent Extracts from Heartwood of Ceasalpinia sappan Linn. for Determination of Aluminium. Anal. Sci. 2016, 32, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Insain, P.; Khonyoung, S.; Sooksamiti, P.; Lapanantnoppakhun, S.; Jakmunee, J.; Grudpan, K.; Zajicek, K.; Hartwell, S.K. Green Analytical Methodology Using Indian Almond (Terminalia catappa L.) Leaf Extract for Determination of Aluminum Ion in Waste Water from Ceramic Factories. Anal. Sci. 2013, 29, 655–659. [Google Scholar] [CrossRef]
- Monji, A.B.; Zolfonoun, E.; Ahmadi, S.J. Application of water extract of slippery elm tree leaves as a natural reagent for selective spectrophotometric determination of trace amounts of molybdenum(VI) in environmental water samples. Toxicol. Environ. Chem. 2009, 91, 1229–1235. [Google Scholar] [CrossRef]
- Boveiri Monji, A.; Zolfonoun, E.; Javad Ahmadi, S. Application of acidic extract of Platanus orientalis tree leaves as a green reagent for selective spectrophotometric determination of zirconium. Green Chem. Lett. Rev. 2008, 1, 107–112. [Google Scholar] [CrossRef]
- Jaikrajang, N.; Kruanetr, S.; Harding, D.J.; Rattanakit, P. A simple flow injection spectrophotometric procedure for iron(III) determination using Phyllanthus emblica Linn. as a natural reagent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 726–734. [Google Scholar] [CrossRef]
- Settheeworrarit, T.; Hartwell, S.K.; Lapanatnoppakhun, S.; Jakmunee, J.; Christian, G.D.; Grudpan, K. Exploiting guava leaf extract as an alternative natural reagent for flow injection determination of iron. Talanta 2005, 68, 262–267. [Google Scholar] [CrossRef]
- Pinyou, P.; Hartwell, S.K.; Jakmunee, J.; Lapanantnoppakhun, S.; Grudpan, K. Flow Injection Determination of Iron Ions with Green Tea Extracts as a Natural Chromogenic Reagent. Anal. Sci. 2010, 26, 619–623. [Google Scholar] [CrossRef]
- Weerasuk, B.; Supharoek, S.-A.; Grudpan, K.; Ponhong, K. Exploiting crude betel nut (Areca catechu Linn.) extracted solution as a natural reagent with sequential injection spectrophotometry for iron analysis in rice samples. J. Iran. Chem. Soc. 2022, 19, 741–751. [Google Scholar] [CrossRef]
- Ponhong, K.; Siriangkhawut, W.; Lee, C.Y.; Teshima, N.; Grudpan, K.; Supharoek, S.-A. Dual determination of nitrite and iron by a single greener sequential injection spectrophotometric system employing a simple single aqueous extract from Areca catechu Linn. serving as a natural reagent. RSC Adv. 2022, 12, 20110–20121. [Google Scholar] [CrossRef] [PubMed]
- Kotchabhakdi, N.; Seanjum, C.; Kiwfo, K.; Grudpan, K. A simple extract of Leucaena leucocephala (Lam.) de Wit leaf containing mimosine as a natural color reagent for iron determination. Microchem. J. 2021, 162, 105860. [Google Scholar] [CrossRef]
- Ganranoo, L.; Chokchaisiri, R.; Grudpan, K. Simple simultaneous determination of iron and manganese by sequential injection spectrophotometry using astilbin extracted from Smilax china L. root. Talanta 2019, 191, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Mortada, W.I. Recent developments and applications of cloud point extraction: A critical review. Microchem. J. 2020, 157, 105055. [Google Scholar] [CrossRef]
- Bezerra, M.D.A.; Arruda, M.A.Z.; Ferreira, S.L.C. Cloud Point Extraction as a Procedure of Separation and Pre-Concentration for Metal Determination Using Spectroanalytical Techniques: A Review. Appl. Spectrosc. Rev. 2005, 40, 269–299. [Google Scholar] [CrossRef]
- Lemos, V.A.; Santos, E.S.; Santos, M.S.; Yamaki, R.T. Thiazolylazo dyes and their application in analytical methods. Mikrochim. Acta 2007, 158, 189–204. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Jin, X.; Wei, D. Determination of trace mercury species by high performance liquid chromatography–inductively coupled plasma mass spectrometry after cloud point extraction. J. Hazard. Mater. 2009, 172, 1282–1287. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Yang, X.; Li, G.; Liao, X. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples. Saudi J. Biol. Sci. 2017, 24, 589–594. [Google Scholar] [CrossRef]
- Manzoori, J.L.; Karim-Nezhad, G. Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination. Anal. Chim. Acta 2003, 484, 155–161. [Google Scholar] [CrossRef]
- Mortada, W.I.; Hassanien, M.M.; El-Asmy, A.A. Cloud point extraction for the determination of trace amounts of Pt(iv) by graphite furnace atomic absorption spectrometry. Anal. Methods 2013, 5, 530–535. [Google Scholar] [CrossRef]
- Li, Y.; Hu, B.; Jiang, Z. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Anal. Chim. Acta 2006, 576, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lana, N.B.; Berton, P.; Covaci, A.; Atencio, A.G.; Ciocco, N.F.; Altamirano, J.C. Ultrasound leaching–dispersive liquid–liquid microextraction based on solidification of floating organic droplet for determination of polybrominated diphenyl ethers in sediment samples by gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1285, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Dai, X.; Wang, W.; He, Y.; Liu, Z.; Shao, M. Optimization of selective pressurized liquid extraction and ultrasonication-assisted QuEChERS methods for the determination of polybrominated diphenyl ethers in sediments. Anal. Methods 2015, 7, 9542–9548. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Tabib, M.; Tao, Y.; Ginies, C.; Bornard, I.; Rakotomanomana, N.; Remmal, A.; Chemat, F. A One-Pot Ultrasound-Assisted Almond Skin Separation/Polyphenols Extraction and its Effects on Structure, Polyphenols, Lipids, and Proteins Quality. Appl. Sci. 2020, 10, 3628. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochemistry 2021, 70, 105325. [Google Scholar] [CrossRef]
- Kia, A.G.; Ganjloo, A.; Bimakr, M. A Short Extraction Time of Polysaccharides from Fenugreek (Trigonella foencem graecum) Seed Using Continuous Ultrasound Acoustic Cavitation: Process Optimization, Characterization and Biological Activities. Food Bioprocess Technol. 2018, 11, 2204–2216. [Google Scholar] [CrossRef]
- Noroozi, F.; Bimakr, M.; Ganjloo, A.; Aminzare, M. A short time bioactive compounds extraction from Cucurbita pepo seed using continuous ultrasound-assisted extraction. J. Food Meas. Charact. 2021, 15, 2135–2145. [Google Scholar] [CrossRef]
- Bimakr, M.; Ganjloo, A.; Noroozi, A. Effect of acoustic cavitation phenomenon on bioactive compounds release from Eryngium caucasicum leaves. J. Food Meas. Charact. 2019, 13, 1839–1851. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Adiamo, O.Q.; Ghafoor, K.; Babiker, E.E. Optimization of ultrasonic-assisted extraction of phenolic compounds from fenugreek (Trigonella foenum-graecum L.) seed. CyTA-J. Food 2016, 14, 369–374. [Google Scholar] [CrossRef] [Green Version]
- XiaoLaiYun, Introduction and cultivation of Dipterocarpus intricatus Dyer. J. Plant Resour. Environ. 1996, 5, 63–64.
- Seo, C.; Ahn, E.-K.; Lee, J.A.; Kang, J.-S.; Byun, H.-W.; Hong, S.S. Phenolic Constituents of the Stems of Dipterocarpus intricatus. Chem. Nat. Compd. 2020, 56, 920–922. [Google Scholar] [CrossRef]
- Robles, H. Tannic Acid. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 474–475. [Google Scholar]
- Le, H.T.; Luu, T.N.; Nguyen, H.M.T.; Nguyen, D.H.; Le, P.T.Q.; Trịnh, N.N.; Le, V.S.; Nguyen, H.D.; Van, H.T. Antibacterial, antioxidant and cytotoxic activities of different fractions of acetone extract from flowers of Dipterocarpus intricatus Dyer (Dipterocarpaceae). Plant Sci. Today 2021, 8, 273–277. [Google Scholar] [CrossRef]
- Çakar, S.; Özacar, M. Fe–tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochim Acta A 2016, 163, 79–88. [Google Scholar] [CrossRef]
- Li, Y.M.; Miao, X.; Wei, Z.G.; Cui, J.; Li, S.Y.; Han, R.; Zhang, Y.; Wei, W. Iron-tannic acid nanocomplexes: Facile synthesis and application for removal of methylene blue from aqueous solution. Dig. J. Nanomater. Bios. 2016, 11, 1045–1061. [Google Scholar]
- Didpinrum, P.; Ponhong, K.; Siriangkhawut, W.; Supharoek, S.-A.; Grudpan, K. A Cost-Effective Spectrophotometric Method Based on Enzymatic Analysis of Jackfruit Latex Peroxidase for the Determination of Carbaryl and Its Metabolite 1-Napthol Residues in Organic and Chemical-Free Vegetables. Food Anal. Methods 2020, 13, 433–444. [Google Scholar] [CrossRef]
- Santaladchaiyakit, Y.; Srijaranai, S. A simplified ultrasound-assisted cloud-point extraction method coupled with high performance liquid chromatography for residue analysis of benzimidazole anthelmintics in water and milk samples. Anal. Methods 2012, 4, 3864–3873. [Google Scholar] [CrossRef]
- Siriangkhawut, W.; Didpinrum, P.; Khanhuathon, Y.; Ponhong, K.; Grudpan, K. Small-Scale Ultrasound-Assisted Extraction of Phenolics from Pomegranate Peels and Their Application as a Natural Reagent for the Colorimetric Assay of Iron. Anal. Lett. 2020, 53, 887–904. [Google Scholar] [CrossRef]
- Priego-Capote, F.; de Castro, L. Ultrasound-assisted digestion: A useful alternative in sample preparation. J. Biochem. Biophys. Methods 2007, 70, 299–310. [Google Scholar]
- You, X.; Jiang, W.; Liu, F.; Liu, C. QuEChERS in Combination with Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Method for the Simultaneous Analysis of Six Fungicides in Grape. Food Anal. Methods 2013, 6, 1515–1521. [Google Scholar] [CrossRef]
- Yamini, Y.; Faraji, M.; Shariati, S.; Hassani, R.; Ghambarian, M. On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples. Anal. Chim. Acta 2008, 612, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Farrukh, M.A.; Siraj, N.; Rehman, A.U.; Naqvi, I.I. Comparative study of spectroscopic techniques for the estimation of iron in apple and vegetables. J. Saudi Chem. Soc. 2010, 14, 209–212. [Google Scholar] [CrossRef]
- Pan, X.-D.; Tang, J.; Chen, Q.; Wu, P.-G.; Han, J.-L. Evaluation of direct sampling method for trace elements analysis in Chinese rice wine by ICP–OES. Eur. Food Res. Technol. 2013, 236, 531–535. [Google Scholar] [CrossRef]
Natural Reagent. | Analytical Method | Preconcentration Method | Sample | Linearity (mg·L−1) | LOD/LOQ (mg·L−1) | %RSD | Ref. |
---|---|---|---|---|---|---|---|
Indian gooseberry | Flow injection spectrophotometry | - | Pharmaceutical preparations and water samples, groundwater, and tap water | 0.5–20.0 | 0.31/0.5 | 2.02–2.32 | [19] |
Guava leaves | Flow injection spectrophotometry | - | Tap water | 1.0–10.0 | 1/- | 3–10 | [20] |
Green tea | Flow injection spectrophotometry | - | Pharmaceutical preparations | 1.0–20.0 | 0.05/- | 1.1–7.1 | [21] |
Betel nut | Sequential injection spectrophotometry | - | Rice | 0.2–10 | 0.06/0.20 | <5 | [22] |
Lead tree | Spectrophotometry | - | Blood tonic | 0–10 | 0.2/0.7 | <5 | [24] |
Smilax china root | Sequential injection spectrophotometry | - | Groundwater | 1.0–8.0 | 0.05/0.17 | 2.6 | [25] |
Dipterocarpus intricatus Dyer | Spectrophotometry | Cloud point extraction | Vegetable | 0.1–1.0 | 0.03/0.09 | 0.9–2.3 | This study |
Vegetable Sample | Iron (mg/100 g ±SD, n = 3) | |
---|---|---|
Proposed | FAAS | |
Chinese kale | 3.47 ± 0.20 | 3.51 ± 0.30 |
Sweet basil | 2.45 ± 0.30 | 2.48 ± 0.24 |
Tiliacora triandra leaf | 8.76 ± 0.29 | 9.34 ± 0.39 |
Siamese neem flower | 4.49 ± 0.19 | 4.68 ± 0.20 |
Wildbetal leafbush | 4.94 ± 0.10 | 5.32 ± 0.26 |
Thai copper pod | 13.36 ± 0.95 | 12.44 ± 0.94 |
Peppermint leaf | 8.87 ± 0.43 | 9.20 ± 0.26 |
Turkey berry fruit | 5.25 ± 0.27 | 5.01 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supharoek, S.-a.; Weerasuk, B.; Siriangkhawut, W.; Grudpan, K.; Ponhong, K. Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit. Molecules 2022, 27, 5697. https://doi.org/10.3390/molecules27175697
Supharoek S-a, Weerasuk B, Siriangkhawut W, Grudpan K, Ponhong K. Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit. Molecules. 2022; 27(17):5697. https://doi.org/10.3390/molecules27175697
Chicago/Turabian StyleSupharoek, Sam-ang, Bordin Weerasuk, Watsaka Siriangkhawut, Kate Grudpan, and Kraingkrai Ponhong. 2022. "Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit" Molecules 27, no. 17: 5697. https://doi.org/10.3390/molecules27175697
APA StyleSupharoek, S. -a., Weerasuk, B., Siriangkhawut, W., Grudpan, K., & Ponhong, K. (2022). Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit. Molecules, 27(17), 5697. https://doi.org/10.3390/molecules27175697