Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts
Abstract
:1. Introduction
2. Results
2.1. Bioactive Substances in Peanuts during Germination
2.2. Effects of Different Soaking Solutions on the Bioactive Substances of Germinated Peanuts
2.3. Effects of Different Physical Methods on Bioactive Substances in Germinated Peanuts
2.4. Effects of Physical and Chemical Methods on Bioactive Substances in Germinated Peanuts
3. Discussion
3.1. Bioactive Substances in Peanuts during Germination
3.2. Effects of Different Soaking Solutions on the Bioactive Substances in Germinated Peanuts
3.3. Effects of Different Physical Methods on Bioactive Substances in Germinated Peanuts
3.4. Effects of Physical and Chemical Methods on Bioactive Substances in Germinated Peanuts
4. Materials and Methods
4.1. Materials
4.2. Equipment
4.3. Preparation of Germinated Peanuts
4.4. Analysis of Antioxidant Components and Antioxidant Activity of Dried Germinated Peanuts
4.4.1. Extraction and Analysis of Resveratrol
4.4.2. Extraction and Analysis of Gamma-Aminobutyric Acid (GABA)
4.4.3. Microwave Extraction
4.4.4. Determination of Total Polyphenols
4.4.5. Determination of Flavonoids
4.4.6. Determination of DPPH Free Radical Scavenging Activity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sahdev, R.K. Present status of peanuts and progression in its processing and preservation techniques. Agric. Eng. Int. CIGR J. 2015, 17, 309–327. [Google Scholar]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xu, X.; Jiang, Y.; Su, J.; Zhang, Y.; Su, X.; Yao, P.; Yang, N.; Jin, Y.; Wu, F. Effect of germination on nutrition and bioactive components in different cultivars of peanut (Arachis hypogaea L.) seeds. Sci. Technol. Food Ind. 2019, 40, 1–10. [Google Scholar]
- Ju, J.S. Commercialized machine for soaking and slicing peanuts to induce resveratrol production. J. Food Process Eng. 2018, 41, e12611. [Google Scholar] [CrossRef]
- Adhikari, B.; Dhungana, S.K.; Ali, M.W.; Adhikari, A.; Kim, I.D.; Shin, D.H. Resveratrol, total phenolic and flavonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts. Food Sci. Biotechnol. 2018, 27, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Limmongkon, A.; Janhom, P.; Amthong, A.; Kawpanuk, M.; Nopprang, P.; Poohadsuan, J.; Boonsong, T. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pac. J. Trop. Biomed. 2017, 7, 332–338. [Google Scholar] [CrossRef]
- Breuss, J.M.; Atanasov, A.G.; Uhrin, P. Resveratrol and its effects on the vascular system. Int. J. Mol. Sci. 2019, 20, 1523. [Google Scholar] [CrossRef] [PubMed]
- Madhuranthakam, C.M.R.; Shakeri, A.; Rao, P.P. Modeling the inhibition kinetics of curcumin, orange G, and resveratrol with amyloid-β peptide. ACS Omega 2021, 6, 8680–8686. [Google Scholar] [CrossRef]
- Ahmed, T.; Javed, S.; Javed, S.; Tariq, A.; Šamec, D.; Tejada, S.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Resveratrol and Alzheimer’s disease: Mechanistic insights. Mol. Neurobiol. 2017, 54, 2622–2635. [Google Scholar] [CrossRef] [PubMed]
- Karatay, K.B.; Yurt Kilcar, A.; Kozgus Guldu, O.; Medine, E.I.; Biber Muftuler, F.Z. Isolation of resveratrol from peanut sprouts, radioiodination and investigation of its bioactivity on neuroblastoma cell lines. J. Radioanal. Nucl. Chem. 2020, 325, 75–84. [Google Scholar] [CrossRef]
- Pyo, K.H.; Lee, Y.W.; Lee, S.H.; Xin, C.F.; Shin, J.H.; Shin, E.H. Preventive effects of resveratrol-enriched extract of peanut sprout on bacteria-and estradiol-induced prostatitis in mice. Nat. Prod. Commun. 2017, 12, 1934578X1701200120. [Google Scholar] [CrossRef]
- Rao, H.; Chen, C.; Tian, Y.; Li, Y.; Gao, Y.; Tao, S.; Xue, W. Germination results in reduced allergenicity of peanut by degradation of allergens and resveratrol enrichment. Innov. Food Sci. Emerg. Technol. 2018, 50, 188–195. [Google Scholar] [CrossRef]
- Yu, M.; Liu, H.; Shi, A.; Liu, L.; Wang, Q. Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds. Ultrason. Sonochem. 2016, 28, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Liao, B.; Huang, J.; Wang, S.; Lei, Y.; Yan, L.; Li, D. Research progress on resveratrol in peanut. Chin. J. Oil Crop Sci. 2008, 30, 522–528. [Google Scholar]
- Lu, Y.; Shao, D.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Strategies for enhancing resveratrol production and the expression of pathway enzymes. Appl. Microbiol. Biotechnol. 2016, 100, 7407–7421. [Google Scholar]
- Li, S.-C. Induction and Biotransformation of Resveratrol of Peanut Gemma. Master Thesis, Department of Biotechnology, TransWorld University, Yunlin, Taiwan, 2016. [Google Scholar]
- Chen, M.; Li, D.; Gao, Z.; Zhang, C. Enzymatic transformation of polydatin to resveratrol by piceid-β-D-glucosidase from Aspergillus oryzae. Bioprocess Biosys. Eng. 2014, 37, 1411–1416. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Shyu, Y.-T.; Wu, S.-J. Different processing treatment for improving γ-aminobutyric acid content in beans. Taiwan Hort. 2016, 62, 235–247. [Google Scholar]
- Jeammuangpuk, P.; Promchote, P.; Duangpatra, J.; Chaisan, T.; Onwimol, D.; Kvien, C.K. Enhancement of Tainan 9 peanut seed storability and germination under low temperature. Int. J. Agron. 2020, 2020, 8813285. [Google Scholar] [CrossRef]
- Peñas, E.; Gómez, R.; Frías, J.; Vidal-Valverde, C. Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control 2010, 21, 82–88. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, R.; Guo, Q.; Gu, Z. NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean. Eur. Food Res. Technol. 2014, 238, 781–788. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, X.; Li, H.; Zhu, F.; Hong, Y.; Varshney, R.K.; Liang, X. Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol. Biol. 2014, 85, 395–409. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Q.; Zhang, A.; Liu, Y.; Zhao, L.; Gu, L.; Yuan, J.; Jia, H.; Shen, X.; Li, Z.; et al. Optimization of γ-aminobutyric acid (GABA) accumulation in germinating adzuki beans (Vigna angularis) by vacuum treatment and monosodium glutamate, and the molecular mechanisms. Front. Nutr. 2021, 8, 693862. [Google Scholar] [CrossRef]
- Uh, S.; Kim, I.; Kim, K.; Seo, Y.; Shin, K.; Li, K.; Kim, H. Improvement the resveratrol content of germinated peanut drink by Lactic acid fermentation. Int. J. Sci. Res. Sci. Eng. Technol. 2021, 8, 262–273. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 2010, 119, 1485–1490. [Google Scholar] [CrossRef]
- Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr. 2014, 54, 734–770. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, J.L.; Resurreccion, A.V.A. Optimization of trans-resveratrol concentration and sensory properties of peanut kernels by slicing and ultrasound treatment, using response surface methodology. J. Food Sci. 2007, 72, S450–S462. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Aagri. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Luo, H.; Chen, H.; Guo, J.; Yu, B.; Zhang, H.; Li, W.; Chen, W.; Zhou, X.; Huang, L.; et al. Optimization of extraction of total trans-resveratrol from peanut seeds and its determination by HPLC. J. Sep. Sci. 2020, 43, 1024–1031. [Google Scholar] [CrossRef]
- Zhou, Z.; Fan, Z.; Meenu, M.; Xu, B. Impact of germination time on resveratrol, phenolic acids, and antioxidant capacities of different varieties of peanut (Arachis hypogaea Linn.) from China. Antioxidants 2021, 10, 1714. [Google Scholar] [CrossRef] [PubMed]
- Le, P.H.; Verscheure, L.; Le, T.; Verheust, Y.; Raes, K. Implementation of HPLC analysis for γ-aminobutyric acid (GABA) in fermented food matrices. Food Anal. Methods 2020, 13, 1190–1201. [Google Scholar] [CrossRef]
- Chen, B.-H.; Chen, S.-D. Microwave extraction of polysaccharides and triterpenoids from solid-state fermented products of Poria cocos. Taiwan. J. Agric. Chem. Food Sci. 2013, 51, 188–194. [Google Scholar]
- Xu, B.J.; Chang, S.K.C. A comparative on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef] [PubMed]
Treatment | Germination Ratio (%) | Resveratrol (μg/g DM) | GABA (μg/g DM) |
---|---|---|---|
Ungerminated | - | - | 5.58 ± 2.38 f |
Germination | 88 ± 2.49 a | 4.03 ± 1.09 e | 258.83 ± 1.62 e |
Soaking solution | |||
0.2% NaCl | 89 ± 2.02 a | 5.51 ± 2.35 d | 363.79 ± 2.43 c |
0.2% phenylalanine | 91 ± 1.65 a | 13.64 ± 0.69 b | 312.75 ± 2.27 d |
0.2% glutamate | 86 ± 0.75 b | 8.70 ± 1.31 c | 651.51 ± 1.46 a |
5% rice koji | 87 ± 1.26 b | 28.83 ± 1.59 a | 506.34 ± 1.26 b |
Treatment | Flavonoids (µg Quercetin Equivalent/g DW) | Total Polyphenols (µg Gallic Acid Equivalent/g DW) | Scavenging DPPH Free Radicals (%) |
---|---|---|---|
Ungerminated | 2.20 ± 2.03 f | 40.16 ± 1.69 f | 26.90 ± 3.51 f |
Germination | 19.20 ± 1.03 e | 210.41 ± 1.71 e | 42.80 ± 2.10 e |
Soaking solution | |||
0.2% NaCl | 31.23 ± 1.54 c | 392.12 ± 1.28 d | 56.58 ± 1.12 d |
0.2% phenylalanine | 27.82 ± 1.95 d | 993.35 ± 3.17 c | 79.29 ± 1.74 c |
0.2% glutamate | 34.13 ± 0.81 b | 1433.19 ± 2.45 b | 81.71 ± 0.88 b |
5% rice koji | 72.53 ± 4.3 a | 1694.22 ± 2.58 a | 92.60 ± 1.47 a |
Treatment | Germination Ratio (%) | Resveratrol (μg/g DW) |
---|---|---|
Ungerminated | - | - |
Germination | 88 ± 2.49 b | 4.03 ± 1.09 f |
High-pressure processing (HPP) holding time: 10 min | ||
50 MPa | 89 ± 1.61 a | 6.67 ± 2.63 c |
100 MPa | 87 ± 0.84 c | 7.66 ± 1.62 a |
200 MPa | 63 ± 1.33 d | 6.91 ± 1.54 b |
300 MPa | 57 ± 2.01 e | 6.22 ± 2.39 d |
400 MPa | 49 ± 1.14 f | 5.34 ± 1.85 e |
Treatment | Germination Ratio | Resveratrol (μg/g DM) | GABA (μg/g DM) |
---|---|---|---|
Ungerminated | - | - | 5.58 ± 2.38 i |
Germination | 88 ± 2.49 b | 4.03 ± 1.09 g | 258.83 ± 1.62 h |
High-pressure processing (HPP) | |||
50 MPa 5 min | 87 ± 1.54 c | 5.47 ± 1.09 f | 354.15 ± 1.62 d |
100 MPa 5 min | 87 ± 1.11 c | 6.62 ± 1.56 e | 397.42 ± 2.17 c |
50 MPa 10 min | 89 ± 1.62 a | 6.67 ± 2.63 e | 467.95 ± 2.55 b |
100 MPa 10 min | 87 ± 0.84 c | 7.66 ± 1.62 d | 497.09 ± 2.75 a |
Ultrasound | |||
10 min | 89 ± 0.72 a | 11.55 ± 3.01 b | 273.40 ± 1.37 g |
20 min | 88 ± 1.01 b | 13.02 ± 0.99 a | 318.71 ± 2.38 f |
30 min | 89 ± 2.32 a | 8.67 ± 2.03 c | 357.89 ± 1.02 e |
Treatment | Flavonoids (µg Quercetin Equivalent/g DW) | Total Polyphenols (µg Gallic Acid Equivalent/g DW) | Scavenging DPPH Free Radicals (%) |
---|---|---|---|
Ungerminated | 2.20 ± 2.03 h | 40.16 ± 1.69 i | 26.90 ± 3.51 i |
Germination | 19.20 ± 1.03 g | 210.41 ± 1.71 h | 42.80 ± 2.1 h |
High-pressure processing (HPP) | |||
50 MPa 5 min | 209.39 ± 1.53 c | 883.13 ± 2.33 d | 78.36 ± 1.64 g |
100 MPa 5 min | 209.73 ± 2.01 c | 1024.49 ± 1.81 b | 81.54 ± 0.91 e |
50 MPa 10 min | 229.69 ± 1.68 b | 1035.97 ± 0.99 c | 84.29 ± 0.72 d |
100 MPa 10 min | 395.90 ± 1.33 a | 1074.37 ± 1.22 a | 87.18 ± 2.61 a |
Ultrasound | |||
10 min | 20.65 ± 1.46 f | 244.28 ± 3.21 g | 80.61 ± 1.59 f |
20 min | 23.72 ± 2.07 e | 281.57 ± 2.69 f | 86.74 ± 0.69 b |
30 min | 30.89 ± 1.29 d | 303.79 ± 4.63 e | 85.49 ± 2.30 c |
Treatment | Germination Ratio (%) | Resveratrol (μg/g DM) | GABA (μg/g DM) |
---|---|---|---|
Ungerminated | - | - | 5.58 ± 2.38 e |
Germination | 88 ± 2.49 a | 4.03 ± 1.09 d | 258.83 ± 1.62 d |
5% rice koji | 89 ± 0.63 a | 28.83 ± 1.59 c | 506.34 ± 1.26 c |
5% rice koji w/HPP | 89 ± 0.41 a | 37.78 ± 2.11 b | 1196.98 ± 2.04 a |
5% rice koji w/ultrasound | 89 ± 1.01 a | 46.53 ± 1.76 a | 974.52 ± 1.83 b |
Treatment | Flavonoids (µg Quercetin Equivalent/g DW) | Total Polyphenols (µg Gallic Acid Equivalent/g DW) | Scavenging DPPH Free Radicals (%) |
---|---|---|---|
Ungerminated | 2.20 ± 2.03 e | 40.16 ± 1.69 e | 26.90 ± 3.51 e |
Germination | 19.20 ± 1.03 d | 210.41 ± 1.71 d | 42.80 ± 2.10 d |
5% rice koji | 65.18 ± 1.33 c | 1511.47 ± 0.49 c | 86.61 ± 1.11 b |
5% rice koji w/HPP | 315.62 ± 1.04 a | 1992.89 ± 0.98 a | 90.33 ± 1.75 a |
5% rice koji w/ultrasound | 102.67 ± 1.85 b | 1674.26 ± 0.71 b | 89.14 ± 1.62 a |
Time | Phase A | Phase B | Flow Rate (mL/min) |
---|---|---|---|
0 | 92 | 8 | 1.0 |
20 | 60 | 40 | 1.0 |
28 | 92 | 8 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-H.; Chen, S.-D. Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts. Molecules 2022, 27, 5700. https://doi.org/10.3390/molecules27175700
Hung C-H, Chen S-D. Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts. Molecules. 2022; 27(17):5700. https://doi.org/10.3390/molecules27175700
Chicago/Turabian StyleHung, Chun-Hsiang, and Su-Der Chen. 2022. "Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts" Molecules 27, no. 17: 5700. https://doi.org/10.3390/molecules27175700
APA StyleHung, C. -H., & Chen, S. -D. (2022). Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts. Molecules, 27(17), 5700. https://doi.org/10.3390/molecules27175700