6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibitory Activity of 6-FU against PTP1B, α-Glucosidase, HRAR, and AGE Formation
2.2. Kinetic Parameters of 6-FU against PTP1B, α-Glucosidase, and HRAR
2.3. Molecular Docking Analysis of 6-FU Interactions with PTP1B
2.4. Molecular Docking Analysis of 6-FU Interactions with α-Glucosidase
2.5. Molecular Docking Analysis of 6-FU Interactions with HRAR
2.6. Molecular Docking Analysis of 6-FU Interactions with HAS
2.7. Effect of 6-FU on Glucose Uptake and PTP1B Expression in Insulin-Resistant C2C12 Skeletal Muscle Cells
2.8. Effect of 6-FU on Fluorescent AGE Formation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Isolation of 6-FU from A. decursiva
3.3. Assay for PTP1B Inhibition
3.4. α-Glucosidase Inhibitory Assay
3.5. HRAR Inhibition Assay
3.6. In Vitro Glycation of HSA
3.7. Inhibition of AGE Formation
3.8. Determination of the Kinetic Parameters of PTP1B, α-Glucosidase, and HRAR Inhibition via Lineweaver-Burk and Dixon Plots
3.9. Molecular Docking Studies
3.10. Cell Culture and Cell Viability Assay
3.11. Muscle Cell Differentiation and Glucose Uptake Assay
3.12. Preparation of Protein Lysates and Western Blot Analysis
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- International Diabetes Federation. IDF Diabetes Atlas. 9th Updated the 2019 Edition. Available online: https://idf.org (accessed on 10 July 2020).
- World Health Organization. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Swe, K.; Reddy, S.S.K. Improving adherence in type 2 diabetes. Clin. Geriatr. Med. 2020, 36, 477–489. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011, 34, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Zaib, S.; Rahman, M.M.; Jannat, S.; Iqbal, J.; Park, S.K.; Chang, M.S. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities. Bioorg. Chem. 2020, 102, 104061. [Google Scholar]
- Ali, M.Y.; Jannat, S.; Rahman, M.M. Ginsenoside derivatives inhibit advanced glycation end-product formation and glucose-fructose mediated protein glycation in vitro via a specific structure-activity relationship. Bioorg. Chem. 2021, 111, 104844. [Google Scholar]
- Taghibiglou, C.; Rashid-Kolvear, F.; Van Iderstine, S.C.; Le-Tien, H.; Fantus, I.G.; Lewis, G.F.; Adeli, K. Hepatic very low-density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J. Biol. Chem. 2002, 277, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Zaib, S.; Rahman, M.M.; Jannat, S.; Iqbal, J.; Park, S.K.; Chang, M.S. Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Chem. Biol. Interact. 2019, 305, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Lee, S.Y. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin. Investig. Drugs 2003, 12, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cong, L.N.; Li, Y.; Yao, Z.J.; Wu, L.; Zhang, Z.Y.; Burke, T.R., Jr.; Quon, M.J. A phosphotyrosyl mimetic peptide reverses impairment of insulin-stimulated translocation of GLUT4 caused by overexpression of PTP-1B in rat adipose cells. Biochemistry 1999, 38, 384–389. [Google Scholar] [CrossRef]
- Kaszubska, W.; Falls, H.D.; Schaefer, V.G.; Haasch, D.; Frost, L.; Hessler, P.; Kroeger, P.E.; White, D.W.; Jirousek, M.R.; Trevillyan, J.M. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol. Cell. Endocrinol. 2002, 195, 109–118. [Google Scholar] [CrossRef]
- Lee, B.H.; Rose, D.R.; Lin, A.H.M.; Quezada-Calvillo, R.; Nichols, B.L.; Hamaker, B.R. Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J. Agric. Food Chem. 2016, 64, 6487–6494. [Google Scholar]
- Wen, H.; Tang, B.; Stewart, A.J.; Tao, Y.; Shao, Y.; Cui, Y.; Yue, H.; Pei, J.; Liu, Z.; Mei, L.; et al. Erythritol attenuates postprandial blood glucose by inhibiting α-glucosidase. J. Agric. Food Chem. 2018, 66, 1401–1407. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Huang, D.; Chen, S.; Xia, Y.; Zhu, S. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chem. 2022, 372, 131334. [Google Scholar] [CrossRef]
- Maccari, R.; Ottana, R. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: New insights and future directions. J. Med. Chem. 2015, 58, 2047–2067. [Google Scholar] [CrossRef]
- Ali, M.Y.; Zaib, S.; Jannat, S.; Khan, I.; Rahman, M.M.; Park, S.K.; Chang, M.E. Inhibition of adose reductase by ginsenoside derivatives via a specific structure activity relationship with kinetics mechanism and molecular docking study. Molecules 2022, 27, 2134. [Google Scholar] [CrossRef]
- Corso, A.; Cappiello, M.; Mura, U. From a dull enzyme to something else: Facts and perspectives regarding aldose reductase. Curr. Med. Chem. 2008, 15, 1452–1461. [Google Scholar] [CrossRef]
- Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 1995, 46, 223–234. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef]
- Uribarri, J.; del Castillo, M.D.; de la Maza, M.P.; Filip, R.; Gugliucci, A.; Luevano-Contreras, C.; Garay-Sevilla, M.E. Dietary Advanced glycation endproducts and their role in health and disease. Adv. Nutr. 2015, 6, 461–473. [Google Scholar] [CrossRef]
- Ahmed, N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabet. Res. Clin. Pract. 2005, 67, 3–21. [Google Scholar] [CrossRef]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef]
- Ali, M.Y.; Seong, S.H.; Jannat, S.; Jung, H.A.; Choi, J.S. Ethnobotany, phytochemistry, and pharmacology of Angelica decursiva Fr. et Sav. Nat. Prod. Sci. 2019, 25, 181–199. [Google Scholar] [CrossRef]
- Yi, J.H.; Park, I.K.; Choi, K.S.; Shin, S.C.; Ahn, Y.J. Toxicity of medicinal plant extracts to Lycoriella ingenua (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae). J. Asia Pac. Entomol. 2008, 11, 221–223. [Google Scholar] [CrossRef]
- Sarkhail, P. Traditional uses phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol. 2014, 156, 235–270. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Islam, M.N.; Ahn, B.R.; Jung, H.A.; Kim, B.W.; Choi, J.S. In vitro antioxidant and anti-inflammatory activities of Angelica decursia. Arch. Pharm. Res. 2012, 35, 179–192. [Google Scholar] [CrossRef]
- Ali, M.Y.; Jannat, S.; Jung, H.A.; Jeong, H.O.; Chung, H.Y.; Choi, J.S. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Chem. Biol. Interact. 2016, 252, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Jung, H.A.; Jannat, S.; Choi, J.S. Dihydroxanthyletin-type coumarins from Angelica decursiva that inhibits the formation of advanced glycation end products and human recombinant aldose reductase. Arch. Pharm. Res. 2018, 41, 196–207. [Google Scholar] [CrossRef]
- Ali, M.Y.; Jannat, S.; Jung, H.A.; Choi, J.S. Insulin–mimetic dihydroxanthyletin-type coumarins from Angelica decursiva with protein tyrosine phosphatase 1B and α-glucosidase inhibitory activities and docking studies of their molecular mechanisms. Antioxidants 2021, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Jung, H.A.; Choi, J.S. Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch. Pharm. Res. 2015, 38, 2216–2227. [Google Scholar]
- Ali, M.Y.; Jannat, S.; Jung, H.A.; Choi, R.J.; Roy, A.; Choi, J.S. Anti-Alzheimer potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac. J. Trop. Med. 2016, 9, 103–111. [Google Scholar] [CrossRef]
- Ali, M.Y.; Seong, S.H.; Reddy, M.R.; Seo, S.Y.; Choi, J.S.; Jung, H.A. Kinetics and molecular docking studies of 6-formyl umbelliferone isolated from Angelica decursiva as an inhibitor of cholinesterase and BACE1. Molecules 2017, 22, 1604. [Google Scholar] [CrossRef]
- Ali, M.Y.; Seong, S.H.; Jung, H.A.; Jannat, S.; Choi, J.S. Kinetics and molecular docking of dihydroxanthyletin-type coumarins from Angelica decursiva that inhibit cholinesterase and BACE1. Arch. Pharm. Res. 2018, 41, 753–764. [Google Scholar] [CrossRef]
- Ishita, I.J.; Islam, M.N.; Kim, Y.S.; Choi, R.J.; Sohn, H.S.; Jung, H.A.; Choi, J.S. Coumarins from Angelica decursiva inhibit lipopolysacharide-induced nitric oxide production in RAW 264.7 cells. Arch. Pharm. Res. 2016, 39, 115–126. [Google Scholar] [CrossRef]
- Ali, M.Y.; Seong, S.H.; Jung, H.A.; Choi, J.S. Angiotensin-I-converting enzyme inhibitory activity of coumarins from Angelica decursiva. Molecules 2019, 24, 3937. [Google Scholar] [CrossRef]
- Seong, S.H.; Ali, M.Y.; Jungd, H.A.; Choi, J.S. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg. Chem. 2019, 92, 103293. [Google Scholar] [CrossRef]
- Kim, S.B.; Kang, M.J.; Kang, C.W.; Kim, N.H.; Choi, H.W.; Jung, H.A.; Choi, J.S.; Kim, G.D. Anti-inflammatory effects of 6-formyl umbelliferone via the NF-κB and ERK/MAPK pathway on LPS-stimulated RAW 264.7 cells. Int. J. Mol. Med. 2019, 43, 1859–1865. [Google Scholar] [CrossRef]
- Caffieri, S.; Di Lisa, F.; Bolesani, F.; Facco, M.; Semenzato, G.; Dall’Acqua, F.; Canton, M. The mitochondrial effects of novel apoptogenic molecules generated by psoralen photolysis as a crucial mechanism in PUVA therapy. Blood 2007, 109, 4988–4994. [Google Scholar] [CrossRef]
- Szczepankiewicz, B.G.; Liu, G.; Hajduk, P.J.; Abad-Zapatero, C.; Pei, Z.; Xin, Z.; Lubben, T.; Trevillyan, J.M.; Stashko, M.A.; Ballaron, S.J.; et al. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc. 2003, 125, 4087–4096. [Google Scholar] [CrossRef]
- Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J. 2010, 277, 4205–4214. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhu, H.D.; Zhang, L.; Li, X.F.; Zhou, W.N.; Tu, Z.C. Urolithin A alleviates advanced glycation end product formation by altering protein structures, trapping methylglyoxal and forming complexes. Food Funct. 2021, 12, 11849. [Google Scholar] [CrossRef]
- Sarmah, S.; Das, S.; Roy, A.S. Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis. Int. J. Biol. Macromol. 2020, 165, 2275–2285. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; Tu, Z.; Wang, H. Mechanism of iso quercitrin attenuates ovalbumin glycation: Investigation by spectroscopy, spectrometry and molecular docking. Food Chem. 2019, 309, 125667. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Shi, M.; Zhang, L. Beneficial effect of galanin on insulin sensitivity in muscle of type 2 diabetic rats. Physiol. Behav. 2011, 103, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.; Mitrakou, A.; Marsh, H.; Schwenk, F.; Benn, J.; Sonnenberg, G.; Arcangeli, M.; Aoki, T.; Sorensen, J.; Berger, M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J. Clin. Investig. 1988, 81, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Barthel, A.; Schmoll, D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 2003, 285, 685–692. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A. The triumvirate: β-Cell, muscle, Liver: A collusion responsible for NIDDM. Diabetes 1988, 37, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Kato, E.; Machikawa, T.; Kimura, S.; Katayama, S.; Kawabata, J. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1. Biochem. Biophys. Res. Commun. 2014, 445, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Hishiki, R.; Kato, E.; Kawabata, J. Screening and identification of disaccharides with insulin mimetic activity against l6 cells. Biosci. Biotechnol. Biochem. 2012, 76, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Jannat, S.; Rahman, M.M. Investigation of C-glycosylated apigenin and luteolin derivatives’ effects on protein tyrosine phosphatase 1B inhibition with molecular and cellular approaches. Comput. Toxicol. 2021, 17, 100141. [Google Scholar]
- Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov. 2002, 1, 696–709. [Google Scholar] [CrossRef]
- Kang, J.H. Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol. Lett. 2003, 145, 181–187. [Google Scholar] [CrossRef]
- Goh, S.Y.; Cooper, M.E. The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef]
- Semchyshyn, H.M.; Miedzobrodzki, J.; Bayliak, M.M.; Lozinska, L.M.; Homza, B.V. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: Potential role of antioxidant and antiglycation enzymes. Carbohydr. Res. 2014, 384, 61–69. [Google Scholar] [CrossRef]
- Kinoshita, T.; Miyake, H.; Fujii, T.; Takakura, S.; Goto, T. The structure of human recombinant aldose reductase complexed with the potent inhibitor zenarestat. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58, 622–626. [Google Scholar] [CrossRef]
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 1999, 12, 439–446. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 1996, 9, 1–5. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. Autodockvina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
IC50 (µM) a | ||||
---|---|---|---|---|
Test Sample | PTP1B | α-Glucosidase | HRAR | AGE |
6-FU | 1.13 ± 0.12 *** | 58.36 ± 1.02 *** | 5.11 ± 0.21 ** | 2.15 ± 0.13 *** |
Kib | 1.72 | 49.52 | 4.87 | |
Inhibition type c | Competitive | Mixed | Mixed | |
Ursolic acid d | 4.28 ± 0.32 ** | |||
Acarbose e | 123.88 ± 0.87 ** | |||
Quercetin f | 3.14 ± 0.17 ** | |||
Aminoguanidine g | 527.43 ± 4.55 * | |||
Zenarestat h | 0.63 ± 0.01 *** |
Target Enzymes | PDB ID | Ligands | Binding Energies (Kcal/mol) | Hydrogen Bonds, Interacting Residues, and Bonding Distance | Hydrophobic Interactions |
---|---|---|---|---|---|
Protein tyrosine phosphatase 1B (PTP1B) | 1NNY | 6-formyl umbelliferone (6-FU) | −8.1 | Gly218 (2.89 Å), Gly220 (1.97Å), Ile219 (2.10 Å), Ser216 (2.75 Å), Arg221 (2.58 Å), Lys116 (2.29 Å) | Ala217 (π-alkyl, 4.50 Å), Cys215 (π-alkyl, 4.84 Å) |
Compound 23 | −8.6 | Asp48 (2.82 and 2.64 Å), Arg254 (2.86 Å), Arg221(2.80 and 3.05 Å), Ser216 (3.14 Å), Gly220 (2.72 Å), Gly218 (3.39 Å), Ile219 (3.01 Å), Ala217 (2.69 Å) | Ala27 (π-alkyl, 5.09 Å), Ala217 (π-alkyl, 5.36 Å), Met258 (π-sulfur, 5.59 and 5.91 Å), Tyr46 (π-sigma, 3.57 Å), Ala217 (π-sigma, 3.87 Å), Tyr46 (π-π stacked 5.21 Å), Tyr46 (carbon hydrogen bond, 3.94 Å), Gly220 (π-donor-hydrogen bond, 3.88 Å) | ||
α-Glucosidase | 3A4A | 6-formyl umbelliferone (6-FU) | −7.9 | Asn235 (1.83 Å), Asn317 (2.17 Å), Gly161 (2.05 Å), Lys156 (3.08 Å) | Ala418 (π-alkyl, 4.69 Å), Ile419 (π-alkyl, 5.24 Å), His423 (π-π T-shaped 5.10 Å), Lys156 (π-cation, 4.01 Å), Lys156 (carbon hydrogen bond, 3.38 Å) |
Acarbose | −8.2 | Asp352 (2.38 Å), Asp215 (2.90 Å), Arg442 (2.31 Å), Gln279 (3.02 Å), Pro312 (3.08 Å), Ser240 (2.90 Å), Tyr158 (2.73 Å) | Pro312 (carbon hydrogen bond, 2.68 Å), His280 (π-sigma, 3.93 Å), Glu411 (unfavorable accepter-accepter, 2.93 Å) | ||
Alpha-D-glucose | −6.8 | Asp69 (2.63 Å), Arg442 (2.78 Å), Arg213 (2.89 Å), Asp352 (2.67 and 2.52Å), Asp (2.88 Å), Glu277 (2.75 Å), His112 (2.77 Å), His351 (3.01 and 3.01 Å) | Tyr72 (π-donor hydrogen bond 3.93 Å), Asp69 (carbon hydrogen bond, 3.41 Å) | ||
Human recombinant aldose reductase (HRAR) | 1IEI | 6-formyl umbelliferone (6-FU) | −7.8 | Cys298 (2.19 Å), Tyr309 (2.10 Å) | Leu300 (π-sigma, 3.64 Å), Leu300 (π-alkyl, 4.48 Å), Cys303 (π-alkyl, 5.02 Å), Trp111 (π-π stacked, 4.57 and 4.21 Å) |
Zenarestat | −8.0 | Cys298 (2.45 Å), Lys21 (2.29 Å), Tyr48 (2.91 Å), Trp111(2.98 Å), Trp20 (2.78 Å) | Trp20 (π-alkyl, 4.83 Å), Pro218 (π-alkyl, 4.83 Å), Lys21 (π-alkyl, 5.23 Å), Val47 (alkyl, 4.48 Å), Nap350 (π-alkyl, 4.44 Å), Trp20 (π-π stacked, 5.56 Å) | ||
Quercetin | −8.2 | Arg217 (2.32 and 4.09 Å), Gly213 (2.59 Å), Leu227 (2.64 Å), Ser226 (2.66 Å) | Pro215 (π-alkyl, 5.07 and 3.99 Å), Asp224 (unfavorable donor-donor, 3.68 Å), Pro222 (carbon hydrogen bond, 3.49 Å) | ||
Human serum albumin (HSA) | 1AO6 | 6-formyl umbelliferone (Site-I) | −6.9 | Arg257 (3.46 Å) | Leu260 (π-alkyl, 5.29 Å), Ala291(π-alkyl, 4.64 and 4.28 Å), Leu238 (π-alkyl, 5.31Å), Ile290 (π-alkyl, 5.26 Å), Leu238 (π-sigma, 4.77 Å), Arg222 (π-cation, 4.32 Å) |
6-formyl umbelliferone (Site-II) | −6.6 | Asn405 (2.38 Å) | Ala406 (π-alkyl, 4.84 Å), Leu529 (π-alkyl, 4.95 Å), Lys545 (π-alkyl, 4.08 and 3.98 Å), Val406 (π-alkyl, 5.17 Å), Met548 (π-sulfur, 5.71 Å), Val409 (π-sigma, 3.91 Å), Leu544 (amide-π stacked, 4.33 Å), Asn403 (amide-π stacked, 4.54 and 4.59 Å) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.Y.; Zamponi, G.W.; Seong, S.H.; Jung, H.A.; Choi, J.S. 6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation. Molecules 2022, 27, 5720. https://doi.org/10.3390/molecules27175720
Ali MY, Zamponi GW, Seong SH, Jung HA, Choi JS. 6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation. Molecules. 2022; 27(17):5720. https://doi.org/10.3390/molecules27175720
Chicago/Turabian StyleAli, Md Yousof, Gerald W. Zamponi, Su Hui Seong, Hyun Ah Jung, and Jae Sue Choi. 2022. "6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation" Molecules 27, no. 17: 5720. https://doi.org/10.3390/molecules27175720
APA StyleAli, M. Y., Zamponi, G. W., Seong, S. H., Jung, H. A., & Choi, J. S. (2022). 6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation. Molecules, 27(17), 5720. https://doi.org/10.3390/molecules27175720