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Abstract: The crystalline zinc borate phase ZnB3O4(OH)3, known in commerce as 2ZnO·3B2O3·3.5H2O,
is an important industrial material used as a fire-retardant synergist in polymers, a source of micronu-
trients in agriculture, and a preservative in building materials. It lends durability to wood composite
building materials by inhibiting attack by wood destroying organisms. The hydrolysis chemistry
of this zinc borate is relevant to its industrial use. ZnB3O4(OH)3 exhibits incongruent solubility,
reversibly hydrolyzing at neutral pH to insoluble Zn(OH)2 and soluble B(OH)3. It is sparingly soluble
with a room temperature solubility of 0.270 wt% in terms of its equivalent oxide components in
solution, comprising 0.0267 wt% B2O3 and 0.003 wt% ZnO. Aspects of the hydrolysis chemistry of
zinc borate under neutral pH conditions are discussed.

Keywords: solubility; boric acid; zinc oxide; zinc hydroxide; wulfingite; composite materials;
preservative

1. Introduction

Zinc borate ranks among the top ten boron-containing chemicals in terms of global
production and use. Of the several known zinc borate phases, ZnB3O4(OH)3, having the
resolved oxide formula 2ZnO·3B2O3·3H2O, is by far the most commercially important
and has been in industrial scale production for more than half a century [1]. Tens of
thousands of tons of this compound are used annually in industrial applications, where
it is known as an article of commerce as 2ZnO·3B2O3·3.5H2O. This slightly incorrect
commercial formula is a result of an early error in characterization, but it is correctly
formulated as the trihydrate for its oxide formula [2]. The compound actually contains
no free water of hydration, nor free ZnO and B2O3, which are abstract components of the
oxide formula conventionwhich factors out hydroxyl groups as apparent water. While the
minor inaccuracy in the commercial formula has no bearing on the properties or efficacy of
this compound, the more accurate and concise formula ZnB3O4(OH)3 is primarily used
herein.

This is the only zinc borate compound that currently carries biocidal registrations,
including with the U.S. EPA and the Canadian PMRA, for certain brands. It is used
extensively as a fire retardant synergist in polymers and to lend durability to engineered
wood building materials, wood-plastic composites, and related products. In polymers, it
is used in combination with other additives to reduce flammability, suppress smoke, and
improve electrical properties [3,4]. In building materials, it provides protection against
attack by decay fungi and boring insects. In particular, oriented strand board (OSB) siding
and sheathing products containing zinc borate preservative have a long record of excellent
durability in service extending back more than 30 years [5–8]. The hydrolysis chemistry of
zinc borate has considerable relevance to its industrial applications.

Boric acid is well known to inhibit wood destroying organisms and is a registered
biocide in many regions, including USA, Canada, and the EU. However, due to its relatively
high water solubility and low dehydration onset temperature (<100 ◦C), it is often imprac-
tical to incorporate boric acid directly into polymers and composite building materials,
especially when heat is applied during manufacture. On the other hand, borates that are
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completely insoluble are not expected to be efficacious as biocides since it is necessary
for some amount of borate to be mobile and biologically available in order to control
undesirable organisms. Zinc borate exhibits both low solubility and a high dehydration
onset temperature, ca. 290 ◦C, making it suitable for use in many manufacturing processes.
Despite its industrial use in many applications for more than half a century, we are unaware
of any detailed reports on the hydrolysis chemistry of zinc borate. Herein, we describe
measurements of the solubility of zinc borate ZnB3O4(OH)3 and its mode of hydrolysis,
which provides a likely mechanism for its efficacy in enhancing durability with respect to
biodegradation.

2. Materials and Methods
2.1. Materials and Measurements

Zinc borate used in this study was a commercially available product produced by
U.S. Borax Inc. with a mean particle size of about 5 µm. Powder X-ray diffraction (PXRD)
data were collected using a Panalytical Empyrean diffractometer using Cu Kα radiation.
Boron and zinc concentrations were measured using a ThermoFisher iCAP 6500 inductively
couple plasma optical emission spectrometer (ICP-OES).

2.2. Hydrolysis Procedure

Varying weighed amounts of zinc borate were added to a 20-L cylindrical glass battery
jar containing measured amounts of deionized water. The container was covered to reduce
evaporation, and the resulting mixtures were stirred using a magnetic spin bar at a rate
sufficient to keep the zinc borate suspended at room temperature for 72 h. The slurries were
then filtered by siphoning the suspension from the tank through a Bückner funnel fitted
with medium filter paper, resulting in a completely clear filtrate in the receiving flask. The
recovered solids were air dried and submitted to PXRD analysis for identification. Boron
and zinc concentrations of the clear filtrate solutions were measured by ICP-OES. Controls
with no added zinc borate were undertaken to confirm that any boron that might leach
from the borosilicate glass vessel under the experimental conditions was insignificant.

As an example, a 0.05% suspension was prepared by adding 9.00 g zinc borate to
17,991 g deionized water in a glass tank. The suspension was stirred for 72 h and then
filtered, producing in a clear filtrate in the receiving flask. The filtered solids were subjected
to identification by PXRD. The clear filtrate was submitted to ICP-OES analysis for B and
Zn. A portion of the clear filtered was evaporated down at room temperature and resulting
solid evaporite submitted to PXRD analysis to identify the solute.

2.3. Rate of Dissolution Procedure

Suspensions of zinc borate of known concentrations were prepared gravimetrically
in Erlenmeyer flasks and agitated continuously at room temperature at a rate sufficient to
maintain the solids in suspension using an orbital stir platform. Portions of the suspensions
were removed periodically by syringe, filtered through 5 µm disposable Millipore filters,
and the resulting clear filtrates were submitted to ICP-OES analysis for measurement of
boron and zinc concentrations.

3. Results and Discussion

Zinc borate is produced by the reaction of zinc oxide with excess boric acid at tem-
peratures above 70 ◦C in aqueous suspension, usually in the presence of product seed, as
shown in Equation (1) [9]. If the mother liquor does not contain a sufficient concentration
of excess of boric acid, or if the temperature is not sufficiently high, other zinc borate phase
may form, such as Zn[B3O3(OH)5]·H2O (2ZnO·3B2O3·7H2O) or 3ZnO·5B2O3·14H2O. The
structure and chemical formula of ZnB3O4(OH)3 is well defined, based on its single crystal
X-ray diffraction structure, shown schematically in Figure 1 [2]. It is an inoborate consisting
of chains of triborate rings with interstitial tetrahedral Zn2+ cations coordinated to hydroxyl
and boroxyl oxygen atoms. The structure is further interconnected by hydrogen bonds.
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Inoborates generally exhibit relatively slow dissolution rates compared to nesoborates
which contain insular borate anions. The structural chemistry of metal borates has been
reviewed [10]. Although the formula 2ZnO·3B2O3·3.5H2O used in commerce was shown
long ago to be incorrect and properly should be given as 2ZnO·3B2O3·3H2O, these two
formulas have different CAS numbers, causing some confusion in the regulatory domain.

excess B(OH)3
ZnO + 3 B(OH)3 → ZnB3O4(OH)3 + 3 H2O

>70 ◦C
(1)
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Figure 1. Schematic structure of ZnB3O4(OH)3.

When zinc borate is added to water at neutral pH in the absence of excess boric acid
it exhibits incongruent solubility, hydrolyzing to less soluble zinc hydroxide and a more
soluble boric acid, according to Equation (2). Hydrolysis at room temperature proceeds
until the boron concentration of the supernatant solution reaches a concentration of about
830 ppm B (77 mM B). The zinc concentration in solution at equilibrium is about 25 ppm
(0.38 mM Zn), owing to the much lower solubility of zinc hydroxide. A boron concentration
of 830 ppm is equivalent to a 0.475 wt% solution of boric acid. The solution pH remained
near 7 during hydrolysis. This can be regarded as a buffered system.

ZnB3O4(OH)3 + 4 H2O 
 Zn(OH)2 + 3 B(OH)3 (2)

Solubilities of borate compounds are traditionally expressed as the sum of the an-
hydrous components of their oxide formulas in solution. Therefore, the solubility of
ZnB3O4(OH)3, with oxide formula 2ZnO·3B2O3·3H2O, is expressed as the sum of the
equivalent B2O3 and ZnO concentrations calculated from measured boron and zinc con-
centrations. Using this convention, the room temperature solubility of ZnB3O4(OH)3 is
0.270 wt%, comprised of 0.0267% B2O3 and 0.003% ZnO.

Polyborate species, most notably [B5O6(OH)4]−, [B3O3(OH)4]−, [B3O3(OH)5]2−, and
[B4O5(OH)4]2−, exist in rapid equilibrium in relatively concentrated borate solutions with
population distributions being largely a function of pH. However, at low concentrations the
predominate borate species in solution are limited to monomeric B(OH)3 (pKa = 9.2) and
its conjugate base [B(OH)4]− [11]. Since the solution resulting from zinc borate hydrolysis
has a relatively low boron concentration (<0.5% boric acid eqivalent) and pH ≈ 7, B(OH)3
is expected to be the dominant chemical species present with only minor amounts of polyb-
orates. Owing to the amphoteric nature of zinc, the solubilty is zinc borate is substational
greatly in both acidic and basic solutions.

Concentrated aqueous slurries of zinc borate ZnB3O4(OH)3 are infinitely stable. A
10 wt% zinc borate suspension hydrolyzes to an extent of <4% at room temperature.
Since ZnB3O4(OH)3 is observed to form rapidly only above about 70 ◦C, one might
expect it to slowly convert at room temperature to another zinc borate phase, such as
Zn[B3O3(OH)5]·H2O, which forms below 70 ◦C. However, apparently because of seeding ef-
fects, this does not occur. After continuously stirring a 10 wt% suspension of ZnB3O4(OH)3
at room temperature for more than one year the PXRD pattern of the suspended solids
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showed no indiction of the presence of other phases. This indicates that hydrolysis, at least
in concentrated suspensions, is reversible. The PXRD pattern for ZnB3O4(OH)3 is shown in
Figure 2.
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Figure 2. PXRD pattern of unhydrolyzed zinc borate compared to a reference file for this phase.

When the boron and zinc concentrations of the supernatant solution in a 10 wt% aque-
ous suspension of zinc borate were monitored over time, it was found that approximately
one month is required to reach equilibrium, as shown by the graph in Figure 3. As expected,
more dilute suspensions achieve equilibrium more rapidly. A 0.05 wt% suspension of
ZnB3O4(OH)3 completely hydrolyzes within 24 h.
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ZnB3O4(OH)3 was found to be a stable phase when a 10 wt% aqueous suspension
was maintained at the boiling point under reflux for prolonged periods of time. However,
more dilute slurries were observed to convert to other phases. For example, continuous
boiling under reflux of a 5 wt% aqueous suspension of ZnB3O4(OH)3 (2ZnO·3B2O3·3H2O)
for one month resulted in complete conversion to the crystalline phase 6ZnO·5B2O3·3H2O.
This is represented using oxide formulas by Equation (3) as the structural formula of
6ZnO·5B2O3·3H2O is not currently known. This phase was first reported by Lehmann, et al.
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who prepared it by heating a mixture of zinc oxide with boric acid in a 1:6–8 mole ratio with
water in a sealed container for 16 h at 165 ◦C [12]. The formation of 6ZnO·5B2O3·3H2O
from ZnB3O4(OH)3 in boiling water is preceded after one week by quantitative formation
of the crystalline phase Zn2BO3(OH) (4ZnO·B2O3·H2O) according to Equation (4), which
left in situ further converts to 6ZnO·5B2O3·3H2O. Methods were developed previously
to manufacture Zn2BO3(OH) rapidly on large commercial scale since it is valued for
its usually high dehydration onset temperature of ca. 411 ◦C when used as a polymer
additive [13,14]. It is notable that Zn2BO3(OH) (4ZnO·B2O3·H2O), with B2O3/ZnO ratio
0.25, can be considered to be more hydrolyzed than 6ZnO·5B2O3·3H2O, with B2O3/ZnO
ratio 0.83, and must reabsorb boric acid from solution to further convert to the latter.

3 2ZnO·3B2O3·3H2O→ 6ZnO·5B2O3·3H2O + 8 B(OH)3 (3)

2 ZnB3O4(OH)3 + 5 H2O→ Zn2BO3(OH) + 5 B(OH)3 (4)

Complete hydrolysis, according to Equation (2), of 100.0 g of zinc borate results in
87.2 g of boric acid and 46.7 g zinc hydroxide and requires 33.9 g of water. Thus, pure zinc
borate can be considered to have a boric acid equivalence (%BAE) of 87.2% upon complete
hydrolysis. This boric acid content is only released at relatively high dilution. Because
of the low solubility of the Zn(OH)2 hydrolysis product, zinc borate does not appear to
dissolve in water. This has led to occasional statements in commercial literature that zinc
borate is insoluble in water. The extent of hydrolysis ZnB3O4(OH)3 as a function of varying
suspension concentrations is illustrated in Figure 4. A 50 wt% aqueous suspension of zinc
borate hydrolyzes to the extent of about 0.4%, whereas a 0.05 wt% suspension completely
hydrolyzes
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When the hydrolysis procedure described in Section 2.2 was carried out with a 0.10%
zinc borate aqueous suspension, the solids remaining after 72 h were found to be primarily
the wulfingite phase of zinc hydoxide with a minor amount of yet unhydrolyzed zinc
borate, as indicated by the XRD pattern shown in Figure 5. Synthetic wulfingite, also
known as ε-Zn(OH)2, is the most stable of the five polymorphs of Zn(OH)2. It has a
well-defined structure composed of tetrahedral Zn2+ cations connected by corner sharing
hydroxyl groups in the orthorhombic space group [15].
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PXRD analysis of the suspended solids in a 0.05 wt% suspension of ZnB3O4(OH)3
after 72 h showed complete hydrolysis to Zn(OH)2, as shown in Figure 6. Analysis of the
clear filtrate by ICP-OES indicated that it contained 77 ppm B, within error of the calculated
value of 76 ppm expected for full hydrolysis of the zinc borate according to Equation (2).
The zinc concentration of the filtrate, which had a pH value near 7, was found to be 10 ppm,
indicating that ca. 94% of the zinc resulting from hydrolysis was in the form of insoluble
Zn(OH)2. At this concentration and pH, it is expected that boron is primarily present as
free boric acid with only a small fraction exiting in the form its conjugate base, B(OH)4

−,
and polyborate species.
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Figure 6. PXRD scan of the solids resulting from a 0.05% zinc borate slurry showing the wulfingite
phase of Zn(OH)2 as the sole hydrolysis product (top) and reference pattern for wulfingite (bottom).

A portion of the clear filtrate from the 0.05 wt% suspension that was filtered after 72 h
was allowed to evaporate to dryness, leaving a white powder. This solid evaporite was
submitted to PXRD analysis revealing the pattern of boric acid (sassolite phase) and no
additional diffraction peaks, as shown in Figure 7.
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uations [16]. Industry specific standard test methods must be used to assess potential bo-
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Figure 7. PXRD pattern of the solid evaporite obtained from the clear filtrate of a 0.05 wt% suspension
of ZnB3O4(OH)3 after 72 h (top), and a reference pattern for boric acid (bottom).

4. Conclusions

The zinc borate, ZnB3O4(OH)3, known in commerce as 2ZnO·3B2O3·3.5H2O, is spar-
ingly soluble in water and hydrolyzes incongruently to soluble boric acid and insoluble
zinc hydroxide. The synthesis of zinc borate requires the presence of excess boric acid in
the supernatant solution. When exposed to moisture in the absence of excess boric acid,
hydrolysis occurs to a limited extent resulting in the release of boric acid while insoluble
zinc hydroxide remains in place. This provides a mechanism for the biocidal efficacy of zinc
borate, as it can act as a latent reservoir of boric acid, which becomes available as an active
agent for protection only under moist conditions conducive to biodeterioration. It should
be emphasized that the data presented, herein, pertain only to hydrolysis under neutral
pH conditions and do not address the rate at which boric acid resulting from hydrolysis
might diffuse within or deplete from manufactured articles. Building materials containing
zinc borate have an excellent history of long-term durability in real-world situations [16].
Industry specific standard test methods must be used to assess potential boron depletion
under relevant conditions.
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