Dosimetry of [212Pb]VMT01, a MC1R-Targeted Alpha Therapeutic Compound, and Effect of Free 208Tl on Tissue Absorbed Doses
Abstract
:1. Introduction
2. Results
2.1. Murine [203Pb]VMT01 Biodistribution
2.2. Dosimetry
3. Discussion
4. Materials and Methods
4.1. Radiolabeling and In Vivo Biodistribution
4.2. Ex Vivo Gamma Counting
4.3. 203Pb Dosimetry Analysis
4.4. 212Pb Dosimetry Analysis
4.5. 208Tl Dosimetry Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Herraiz, C.; Martínez-Vicente, I.; Maresca, V. The α-melanocyte-stimulating hormone/melanocortin-1 receptor interaction: A driver of pleiotropic effects beyond pigmentation. Pigment Cell Melanoma Res. 2021, 34, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Tatro, J.B.; Wen, Z.; Entwistle, M.L.; Atkins, M.B.; Smith, T.J.; Reichlin, S.; Murphy, J.R. Interaction of an alpha-melanocyte-stimulating hormone-diphtheria toxin fusion protein with melanotropin receptors in human melanoma metastases. Cancer Res. 1992, 52, 2545–2548. [Google Scholar] [PubMed]
- Siegrist, W.; Solca, F.; Stutz, S.; Giuffrè, L.; Carrel, S.; Girard, J.; Eberle, A.N. Characterization of receptors for alpha-melanocyte-stimulating hormone on human melanoma cells. Cancer Res. 1989, 49, 6352–6358. [Google Scholar] [PubMed]
- Yang, J.; Xu, J.; Gonzalez, R.; Lindner, T.; Kratochwil, C.; Miao, Y. 68Ga-DOTA-GGNle-CycMSHhex targets the melanocortin-1 receptor for melanoma imaging. Sci. Transl. Med. 2018, 10, eaau4445. [Google Scholar] [CrossRef]
- Sgouros, G. α-Particle-Emitter Radiopharmaceutical Therapy: Resistance Is Futile. Cancer Res. 2019, 79, 5479–5481. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.P.; Ballal, S.; Sahoo, R.K.; Tripathi, M.; Seth, A.; Bal, C. Efficacy and safety of 225Ac-PSMA-617 targeted alpha therapy in metastatic castration-resistant Prostate Cancer patients. Theranostics 2020, 10, 9364–9377. [Google Scholar] [CrossRef] [PubMed]
- Jadvar, H.; Colletti, P.M. Targeted α-therapy in non-prostate malignancies. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 47–53. [Google Scholar] [CrossRef]
- Parker, C.; Lewington, V.; Shore, N.; Kratochwil, C.; Levy, M.; Lindén, O.; Noordzij, W.; Park, J.; Saad, F. Targeted Alpha Therapy, an Emerging Class of Cancer Agents: A Review. JAMA. Oncol. 2018, 4, 1765–1772. [Google Scholar]
- Charlton, D.E.; Nikjoo, H.; Humm, J.L. Calculation of initial yields of single- and double-strand breaks in cell nuclei from electrons, protons and alpha particles. Int. J. Radiat. Biol. 1989, 56, 1–19. [Google Scholar] [CrossRef]
- Goodhead, D.T.; Thacker, J.; Cox, R. Weiss Lecture. Effects of radiations of different qualities on cells: Molecular mechanisms of damage and repair. Int. J. Radiat. Biol. 1993, 63, 543–556. [Google Scholar] [CrossRef]
- Goodhead, D.T. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int. J. Radiat. Biol. 1994, 65, 7–17. [Google Scholar] [CrossRef]
- Barendsen, G.W. The relationships between RBE and LET for different types of lethal damage in mammalian cells: Biophysical and molecular mechanisms. Radiat. Res. 1994, 139, 257–270. [Google Scholar] [CrossRef]
- Goodhead, D.T. Molecular and cell models of biological effects of heavy ion radiation. Radiat. Environ. Biophys. 1995, 34, 67–72. [Google Scholar] [CrossRef]
- Nikjoo, H.; O’Neill, P.; Wilson, W.E.; Goodhead, D.T. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res. 2001, 156, 577–583. [Google Scholar] [CrossRef]
- Georgakilas, A.G.; O’Neill, P.; Stewart, R.D. Induction and repair of clustered DNA lesions: What do we know so far? Radiat. Res. 2013, 180, 100–109. [Google Scholar] [CrossRef]
- Nikitaki, Z.; Nikolov, V.; Mavragani, I.V.; Mladenov, E.; Mangelis, A.; Laskaratou, D.A.; Fragkoulis, G.I.; Hellweg, C.E.; Martin, O.A.; Emfietzoglou, D.; et al. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic. Res. 2016, 50, S64–S78. [Google Scholar] [CrossRef]
- Yard, B.D.; Gopal, P.; Bannik, K.; Siemeister, G.; Hagemann, U.B.; Abazeed, M.E. Cellular and Genetic Determinants of the Sensitivity of Cancer to α-Particle Irradiation. Cancer Res. 2019, 79, 5640–5651. [Google Scholar] [CrossRef]
- Pouget, J.P.; Constanzo, J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front. Med. 2021, 8, 692436. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef]
- Li, M.; Baumhover, N.J.; Liu, D.; Boschetti, F.; Lee, D.; Obot, E.R.; Marks, B.M.; Sagastume, E.A.; McAlister, D.; Gabr, M.; et al. Novel chelator modifications to improve in vitro and in vivo stability of 212Pb/212Bi radiopeptide conjugates for alpha-particle radiotherapy. In Proceedings of the SNMMI-ACNM Mid-Winter Meeting, Orlando, FL, USA, 27–29 February 2022. [Google Scholar]
- Dos Santos, J.C.; Schäfer, M.; Bauder-Wüst, U.; Lehnert, W.; Leotta, K.; Morgenstern, A.; Kopka, K.; Haberkorn, U.; Mier, W.; Kratochwil, C. Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: Bringing "the lead" into PSMA-targeted alpha therapy? Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1081–1091. [Google Scholar] [CrossRef]
- Zaid, N.R.R.; Kletting, P.; Beer, A.J.; Rozgaja Stallons, T.A.; Torgue, J.J.; Glatting, G. Mathematical Modeling of In Vivo Alpha Particle Generators and Chelator Stability. Cancer Biother. Radiopharm. 2021. [Google Scholar] [CrossRef] [PubMed]
- Stewart, F.A.; Akleyev, A.V.; Hauer-Jensen, M.; Hendry, J.H.; Kleiman, N.J.; Macvittie, T.J.; Aleman, B.M.; Edgar, A.B.; Mabuchi, K.; Muirhead, C.R.; et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef] [PubMed]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Krahwinkel, W.; Herzog, H.; Feinendegen, L.E. Pharmacokinetics of thallium-201 in normal individuals after routine myocardial scintigraphy. J. Nucl. Med. 1988, 29, 1582–1586. [Google Scholar]
- Svensson, S.E.; Lomsky, M.; Olsson, L.; Persson, S.; Strauss, H.W.; Westling, H. Non-invasive determination of the distribution of cardiac output in man at rest and during exercise. Clin. Physiol. 1982, 2, 467–477. [Google Scholar] [CrossRef]
- Delpassand, E.S.; Tworowska, I.; Esfandiari, R.; Torgue, J.; Hurt, J.; Shafie, A.; Núñez, R. Targeted Alpha-Emitter Therapy With 212Pb-DOTAMTATE for the Treatment of Metastatic SSTR-Expressing Neuroendocrine Tumors: First-in-Human, Dose-Escalation Clinical Trial. J. Nucl. Med. 2022, 121, 263230. [Google Scholar]
- Zaid, N.R.R.; Kletting, P.; Winter, G.; Beer, A.J.; Glatting, G. A Whole-Body Physiologically Based Pharmacokinetic Model for Alpha Particle Emitting Bismuth in Rats. Cancer Biother. Radiopharm. 2022, 37, 41–46. [Google Scholar] [CrossRef]
- Liatsou, I.; Yu, J.; Bastiaannet, R.; Li, Z.; Hobbs, R.F.; Torgue, J.; Sgouros, G. 212Pb-conjugated anti-rat HER2/neu antibody against a neu-N derived murine mammary carcinoma cell line: Cell kill and RBE in vitro. Int. J. Radiat. Biol. 2022, 1452–1461. [Google Scholar] [CrossRef]
- Li, M.; Liu, D.; Lee, D.; Cheng, Y.; Baumhover, N.J.; Marks, B.M.; Sagastume, E.A.; Ballas, Z.K.; Johnson, F.L.; Morris, Z.S.; et al. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma. Cancers 2021, 13, 3676. [Google Scholar] [CrossRef]
- Bolch, W.E.; Eckerman, K.F.; Sgouros, G.; Thomas, S.R. MIRD pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J. Nucl. Med. 2009, 50, 477–484. [Google Scholar] [CrossRef]
- Kirschner, A.S.; Ice, R.D.; Beierwaltes, W.H. Radiation Dosimetry of 131-I-19-Iodocholesterol: The Pitfalls of Using Tissue Concentration Data. J. Nucl. Med. 1975, 16, 247–249. [Google Scholar]
- Cloutier, R.J.; Smith, S.A.; Watson, E.E.; Snyder, W.S.; Warner, G.G. Dose to the fetus from radionuclides in the bladder. Health Phys. 1973, 25, 147–161. [Google Scholar] [CrossRef]
- ICRP. Human alimentary tract model for radiological protection. ICRP Publication 100. A report of The International Commission on Radiological Protection. Ann. ICRP 2006, 36, 25–327. [Google Scholar]
Organ | [203Pb]VMT01 TIAC (MBq h/MBq) | [212Pb]VMT01 TIAC (MBq h/MBq) | ||
---|---|---|---|---|
Female | Male | Female | Male | |
Adrenal glands | 5.08 × 10−5 | 3.72× 10−4 | 4.75 × 10−5 | 3.33 × 10−4 |
Brain | 3.53 × 10−4 | 1.55× 10−3 | 3.06 × 10−4 | 1.24 × 10−3 |
Cortical bone | 1.50 × 10−2 | 8.89 × 10−2 | 1.20 × 10−2 | 6.34 × 10−2 |
Eyes | 4.24 × 10−5 | 8.03 × 10−5 | 3.71 × 10−5 | 6.73 × 10−5 |
Gallbladder | 2.07 × 10−4 | 2.22 × 10−4 | 1.45 × 10−4 | 1.84 × 10−4 |
Heart contents | 2.28 × 10−2 | 2.62 × 10−2 | 2.22 × 10−2 | 2.59 × 10−2 |
Heart wall | 9.93 × 10−4 | 1.91 × 10−3 | 7.74 × 10−4 | 1.43 × 10−3 |
Kidneys | 2.00 × 10−1 | 1.48 × 10−1 | 9.70 × 10−2 | 9.01 × 10−2 |
Left colon | 3.49 × 10−1 | 4.26 × 10−1 | 1.03 × 10−1 | 1.51 × 10−1 |
Liver | 1.09 × 10−1 | 8.85 × 10−2 | 4.29 × 10−2 | 3.68 × 10−2 |
Lungs | 1.79 × 10−2 | 2.18 × 10−2 | 1.11 × 10−2 | 1.66 × 10−2 |
Ovaries | 1.46 × 10−4 | - | 4.99 × 10−5 | - |
Pancreas | 3.68 × 10-4 | 1.19 × 10−3 | 2.95 × 10−4 | 9.27 × 10−4 |
Rectum | 2.87 × 10−1 | 3.67 × 10−1 | 5.04 × 10−2 | 8.47 × 10−2 |
Red marrow | 1.58 × 10−1 | 2.24 × 10−4 | 1.39 × 10−3 | 1.79 × 10−4 |
Right colon | 4.23 × 10−1 | 4.94 × 10−1 | 2.10 × 10−1 | 2.69 × 10-1 |
Small intestines | 1.28 × 10−1 | 1.91 × 10−1 | 1.07 × 10−1 | 1.60 × 10−1 |
Spleen | 3.00 × 10−3 | 3.51 × 10−3 | 1.52 × 10−3 | 1.86 × 10−3 |
Stomach contents | 1.09 × 10−2 | 1.84 × 10−2 | 7.28 × 10−3 | 7.34 × 10−3 |
Testes | - | 3.85 × 10−4 | - | 2.85 × 10−4 |
Thymus | 6.52 × 10−5 | 1.41 × 10−4 | 5.29 × 10−5 | 1.25 × 10−4 |
Thyroid | 1.38 × 10−4 | 4.69 × 10−4 | 1.05 × 10−4 | 3.41 × 10−4 |
Total body/remainder | 4.55 × 100 | 9.20 × 10−1 | 1.18 × 100 | 8.83 × 10−1 |
Trabecular bone | 1.50 × 10−2 | 8.89 × 10−2 | 1.20 × 10−2 | 6.34 × 10−2 |
Urinary bladder | 1.49 × 100 | 1.39 × 100 | 1.40 × 100 | 1.31 × 100 |
Uterus | 1.05 × 10−3 | - | 7.46 × 10−4 | - |
Organ/tissue | 203Pb Absorbed Dose (mGy/MBq) | 212Pb Absorbed Dose (mGyRBE=5/MBq) | ||
---|---|---|---|---|
Female | Male | Female | Male | |
Adrenals | 1.14 × 10−2 | 1.11 × 10−2 | 1.06 × 10−1 | 5.83 × 10−1 |
Brain | 2.17 × 10−3 | 5.86 × 10−4 | 7.88 × 10−3 | 2.20 × 10−2 |
Breasts | 6.71 × 10−3 | - | 4.67 × 10−1 | - |
Oesophagus | 7.55 × 10−3 | 3.12 × 10−3 | 4.69 × 10−1 | 2.90 × 10−1 |
Eyes | 3.78 × 10−3 | 1.02 × 10−3 | 6.16 × 10−2 | 1.08 × 10−1 |
Gallbladder wall | 1.84 × 10−2 | 1.14 × 10−2 | 4.86 × 10−1 | 3.07 × 10−1 |
Left colon | 9.83 × 10−2 | 1.16 × 10−1 | 8.31 × 10−1 | 8.46 × 10−1 |
Small intestine | 2.87 × 10−2 | 2.58 × 10−2 | 5.96 × 10−1 | 4.40 × 10−1 |
Stomach wall | 1.27 × 10−2 | 6.97 × 10−3 | 4.83 × 10−1 | 3.02 × 10−1 |
Right colon | 7.40 × 10−2 | 8.24 × 10−2 | 8.50 × 10−1 | 8.07 × 10−1 |
Rectum | 1.18 × 10−1 | 1.17 × 10−1 | 7.35 × 10−1 | 6.39 × 10−1 |
Heart wall | 7.38 × 10−3 | 4.45 × 10−3 | 7.86 × 10−1 | 7.06 × 10−1 |
Kidneys | 4.23 × 10−2 | 2.80 × 10−2 | 8.27 × 100 | 6.83 × 100 |
Liver | 1.15 × 10−2 | 7.05 × 10−3 | 7.32 × 10−1 | 4.91 × 10−1 |
Lungs | 6.59 × 10−3 | 2.82 × 10−3 | 2.81 × 10−1 | 3.30 × 10−1 |
Ovaries | 2.60 × 10−2 | - | 1.59 × 10−1 | - |
Pancreas | 1.12 × 10−2 | 1.15 × 10−2 | 7.45 × 10−2 | 1.76 × 10−1 |
Prostate | - | 2.53 × 10−2 | - | 3.46 × 10−1 |
Salivary glands | 7.27 × 10−3 | 1.54 × 10−3 | 4.66 × 10−1 | 2.87 × 10−1 |
Red Marrow | 1.06 × 10−3 | 5.46 × 10−3 | 8.64 × 10−1 | 1.06 × 100 |
Osteogenic Cells | 1.46 × 10−2 | 1.23 × 10−2 | 3.88 × 100 | 6.95 × 100 |
Spleen | 1.16 × 10−2 | 6.11 × 10−3 | 2.90 × 10−1 | 3.01 × 10−1 |
Testes | - | 5.26 × 10−3 | - | 2.07 × 10−1 |
Thymus | 5.47 × 10−3 | 1.94 × 10−3 | 6.90 × 10−2 | 1.23 × 10−1 |
Thyroid | 4.88 × 10−3 | 2.16 × 10−3 | 1.50 × 10−1 | 4.04 × 10−1 |
Urinary bladder wall | 2.29 × 10−1 | 1.89 × 10−1 | 2.95 × 100 | 2.14 × 100 |
Uterus | 4.83 × 10−2 | - | 3.27 × 10−1 | - |
0 h | 6 h | |||
---|---|---|---|---|
Activity (MBq) | Activity Fraction | Activity (MBq) | Activity Fraction | |
212Pb | 1.00 | 1.00 | 0.68 | 1.00 |
212Bi | 0.00 | 0.00 | 0.73 | 1.08 |
208Tl | 0.00 | 0.00 | 0.29 | 0.44 |
Organ/Tissue | 208Tl Absorbed Dose (mGy/MBq) | [212Pb]VMT01 Absorbed Dose (mGyRBE=5/MBq) | Total Absorbed Dose (mGyRBE=5/MBq) | 208Tl % Increase |
---|---|---|---|---|
Adrenals | 3.09 × 10−3 | 5.83 × 10−1 | 5.84 × 10−1 | 0.23 |
Brain | 5.98 × 10−4 | 2.20 × 10−2 | 2.23 × 10−2 | 1.18 |
Oesophagus | 9.40 × 10−4 | 2.90 × 10−1 | 2.90 × 10−1 | 0.14 |
Eyes | 5.09 × 10-4 | 1.08 × 10−1 | 1.08 × 10−1 | 0.21 |
Gallbladder wall | 1.57 × 10−3 | 3.07 × 10−1 | 3.08 × 10−1 | 0.22 |
Left colon | 7.38 × 10−3 | 8.46 × 10−1 | 8.49 × 10−1 | 0.38 |
Small intestine | 7.60 × 10−3 | 4.40 × 10−1 | 4.43 × 10−1 | 0.75 |
Stomach wall | 1.14 × 10−3 | 3.02 × 10−1 | 3.02 × 10−1 | 0.16 |
Right colon | 7.06 × 10−3 | 8.07 × 10−1 | 8.10 × 10−1 | 0.38 |
Rectum | 6.58 × 10−3 | 6.39 × 10−1 | 6.42 × 10−1 | 0.45 |
Heart wall | 3.62 × 10−3 | 7.06 × 10−1 | 7.08 × 10−1 | 0.22 |
Kidneys | 1.41 × 10−2 | 6.83 × 100 | 6.84 × 100 | 0.09 |
Liver | 1.97 × 10−3 | 4.91 × 10−1 | 4.92 × 10−1 | 0.17 |
Lungs | 8.02 × 10−4 | 3.30 × 10−1 | 3.30 × 10−1 | 0.11 |
Pancreas | 1.73 × 10−3 | 1.76 × 10−1 | 1.77 × 10−1 | 0.43 |
Prostate | 1.02 × 10−3 | 3.46 × 10−1 | 3.46 × 10−1 | 0.13 |
Salivary glands | 5.98 × 10−4 | 2.87 × 10−1 | 2.87 × 10−1 | 0.09 |
Red marrow | 7.70 × 10−4 | 1.06 × 100 | 1.06 × 100 | 0.03 |
Osteogenic cells | 6.88 × 10−4 | 6.95 × 100 | 6.95 × 100 | 0.00 |
Spleen | 3.24 × 10−3 | 3.01 × 10−1 | 3.02 × 10−1 | 0.47 |
Testes | 3.59 × 10−3 | 2.07 × 10−1 | 2.09 × 10−1 | 0.75 |
Thymus | 8.71 × 10−4 | 1.23 × 10−1 | 1.23 × 10−1 | 0.31 |
Thyroid | 6.39 × 10−4 | 4.04 × 10−1 | 4.04 × 10−1 | 0.07 |
Urinary bladder wall | 8.85 × 10−4 | 2.14 × 100 | 2.14 × 100 | 0.02 |
Organ/Tissue | Human % ID |
---|---|
Heart | 3.2 [26] |
Brain | 1.5 [25] |
Kidneys | 12.5 [26] |
Liver | 5.1 [25] |
Intestine a | 20.1 [25] |
Spleen | 1.0 [25] |
Testes | 0.4 [25] |
Remainder of body | 56.2 [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orcutt, K.D.; Henry, K.E.; Habjan, C.; Palmer, K.; Heimann, J.; Cupido, J.M.; Gottumukkala, V.; Cissell, D.D.; Lyon, M.C.; Hussein, A.I.; et al. Dosimetry of [212Pb]VMT01, a MC1R-Targeted Alpha Therapeutic Compound, and Effect of Free 208Tl on Tissue Absorbed Doses. Molecules 2022, 27, 5831. https://doi.org/10.3390/molecules27185831
Orcutt KD, Henry KE, Habjan C, Palmer K, Heimann J, Cupido JM, Gottumukkala V, Cissell DD, Lyon MC, Hussein AI, et al. Dosimetry of [212Pb]VMT01, a MC1R-Targeted Alpha Therapeutic Compound, and Effect of Free 208Tl on Tissue Absorbed Doses. Molecules. 2022; 27(18):5831. https://doi.org/10.3390/molecules27185831
Chicago/Turabian StyleOrcutt, Kelly D., Kelly E. Henry, Christine Habjan, Keryn Palmer, Jack Heimann, Julie M. Cupido, Vijay Gottumukkala, Derek D. Cissell, Morgan C. Lyon, Amira I. Hussein, and et al. 2022. "Dosimetry of [212Pb]VMT01, a MC1R-Targeted Alpha Therapeutic Compound, and Effect of Free 208Tl on Tissue Absorbed Doses" Molecules 27, no. 18: 5831. https://doi.org/10.3390/molecules27185831
APA StyleOrcutt, K. D., Henry, K. E., Habjan, C., Palmer, K., Heimann, J., Cupido, J. M., Gottumukkala, V., Cissell, D. D., Lyon, M. C., Hussein, A. I., Liu, D., Li, M., Johnson, F. L., & Schultz, M. K. (2022). Dosimetry of [212Pb]VMT01, a MC1R-Targeted Alpha Therapeutic Compound, and Effect of Free 208Tl on Tissue Absorbed Doses. Molecules, 27(18), 5831. https://doi.org/10.3390/molecules27185831