Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Complex Media Compositions for E. gracilis Cultivation in a Stirred Tank Bioreactor
2.2. Selection of Bioprocess Mode for E. gracilis Cultivation in Stirred Tank Bioreactor
3. Materials and Methods
3.1. Microorganisms and Cultivation Media
3.2. Heterotrophic Cultivation of E. gracilis in the STR under Different Bioprocess Modes
3.3. Analytical Procedures and Bioprocess Efficiency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suzuki, K.; Mitra, S.; Iwata, O.; Ishikawa, T.; Kato, S.; Yamada, K. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application. Biosci. Biotechnol. Biochem. 2015, 79, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Hao, W.; Zou, Y.; Shi, M.; Jiang, Y.; Xiao, P.; Lei, A.; Hu, Z.; Zhang, W.; Zhao, L.; et al. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement ‘Euglena’. BMC Biotechnol. 2016, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, L.; Gualtieri, P. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 2018, 31, 107–115. [Google Scholar] [CrossRef]
- Kim, S.; Wirasnita, R.; Lee, D.; Yu, J.; Lee, T. Enhancement of Growth and Paramylon Production of Euglena gracilis by Upcycling of Spent Tomato Byproduct as an Alternative Medium. Appl. Sci. 2021, 11, 8182. [Google Scholar] [CrossRef]
- Kim, J.Y.; Oh, J.-J.; Kim, D.H.; Kim, H.S.; Lee, C.; Park, J.; Choi, Y.-E. Application of electrical treatment on Euglena gracilis for increasing paramylon production. Appl. Microbiol. Biotechnol. 2021, 105, 1031–1039. [Google Scholar] [CrossRef]
- Gissibl, A.; Sun, A.; Care, A.; Nevalainen, H.; Sunna, A. Bioproducts From Euglena gracilis: Synthesis and Applications. Front. Bioeng. Biotechnol. 2019, 7, 108. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogawa, T.; Maruta, T.; Yoshida, Y.; Arakawa, K.; Ishikawa, T. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett. 2017, 591, 1360–1370. [Google Scholar] [CrossRef]
- Chan, G.C.-F.; Chan, W.K.; Sze, D.M.-Y. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009, 2, 25. [Google Scholar] [CrossRef]
- Sun, A.; Hasan, M.T.; Hobba, G.; Nevalainen, H.; Te’O, J. Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions. J. Phycol. 2018, 54, 529–538. [Google Scholar] [CrossRef]
- Šantek, B.; Felski, M.; Friehs, K.; Lotz, M.; Flaschel, E. Production of paramylon, a β-1, 3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng. Life Sci. 2010, 10, 165–170. [Google Scholar]
- Ivušić, F.; Šantek, B. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst. Eng. 2015, 38, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wakisaka, M. Growth promotion of Euglena gracilis by ferulic acid from rice bran. AMB Express 2018, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Lei, T.; Ren, X.; Pei, X.; Feng, Y. Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem. Eng. J. 2008, 39, 496–502. [Google Scholar] [CrossRef]
- Nascimento, R.; Junior, N.; Pereira, N., Jr.; Bon, E.; Coelho, R. Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Lett. Appl. Microbiol. 2009, 48, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Rezić, T.; Filipović, J.; Šantek, B. Photo-mixotrophic Cultivation of Algae Euglena gracilis for Lipid Production. Agric. Conspec. Sci. 2013, 76, 65–69. Available online: https://core.ac.uk/download/pdf/14463372.pdf (accessed on 14 June 2022).
- Šantek, B.; Felski, M.; Friehs, K.; Lotz, M.; Flaschel, E. Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Eng. Life Sci. 2009, 9, 23–28. [Google Scholar] [CrossRef]
- Pavlečić, M.; Crnić, D.; Jurković, E.; Šantek, M.I.; Rezić, T.; Šantek, B. Heterotrophic cultivation of Euglena gracilis on chemically pretreated media. Braz. J. Chem. Eng. 2018, 35, 19–26. [Google Scholar] [CrossRef]
- Li, B.; Sha, M. Scale-up of Escherichia coli Fermentation from Small Scale to Pilot Scale Using Eppendorf Fermentation Systems. Eppendorf Application Note 306. 2016. Available online: https://www.eppendorf.com/product-media/doc/en/180447/Fermentors-Bioreactors_Application-Note_306 (accessed on 14 June 2022).
- Li, T.; Chen, X.-B.; Chen, J.-C.; Wu, Q.; Chen, G.-Q. Open and continuous fermentation: Products, conditions and bioprocess economy. Biotechnol. J. 2014, 9, 1503–1511. [Google Scholar] [CrossRef]
- Šantek, B.; Felski, M.; Friehs, K.; Lotz, M.; Flaschel, E. Production of paramylon, a β-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated batch mode of cultivation. Eng. Life Sci. 2010, 12, 89–94. [Google Scholar] [CrossRef]
- Grimm, P.; Risse, J.M.; Cholewa, D.; Müller, J.M.; Beshay, U.; Friehs, K.; Flaschel, E. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. J. Biotechnol. 2015, 215, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.T.; Sun, A.; Mirzaei, M.; Te’O, J.; Hobba, G.; Sunna, A.; Nevalainen, H. A comprehensive assessment of the biosynthetic pathways of ascorbate, α-tocopherol and free amino acids in Euglena gracilis var. saccharophila. Algal Res. 2017, 27, 140–151. [Google Scholar] [CrossRef]
- Tandon, P.; Jin, Q.; Huang, L. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microb. Cell Fact. 2017, 16, 219. [Google Scholar] [CrossRef]
- Fang, H.; Kang, J.; Zhang, D. Microbial production of vitamin B12: A review and future perspectives. Microb. Cell Fact. 2017, 16, 15. [Google Scholar] [CrossRef]
- Harper, C. Thiamine (vitamin B1) deficiency and associated brain damage is still common throughout the world and prevention is simple and safe! Eur. J. Neurol. 2006, 13, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Hwang, E.; Shin, H. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 2006, 97, 322–329. [Google Scholar] [CrossRef]
- Rezić, T.; Šantek, B.; Novak, S.; Marić, V. Comparison between the heterotrophic cultivation of Paracoccus denitrificans in continuous stirred tank reactor and horizontal rotating tubular bioreactor. Process Biochem. 2006, 41, 2024–2028. [Google Scholar] [CrossRef]
Bioprocess Mode | tM/h | XM/g/L | PM/g/L | YP/X/g/g | PrX/g/Lh | PrP/g/Lh |
---|---|---|---|---|---|---|
Hutner | ||||||
Batch a | 136 | 12.4 | 5.7 | 0.46 | 0.091 | 0.042 |
Glucose and CSS | ||||||
Batch b | 90 | 15.8 | 8.5 | 0.54 | 0.176 | 0.094 |
Fructose and CSS | ||||||
Batch c | 120 | 12.1 | 8.6 | 0.71 | 0.100 | 0.071 |
Galactose and CSS | ||||||
Batch d | 56 | 5.5 | 2.0 | 0.36 | 0.098 | 0.036 |
Sucrose and CSS | ||||||
Batch e | 40 | 4.8 | 2.5 | 0.52 | 0.120 | 0.062 |
Bioprocess Mode | tM/h | XM/g/L | PM/g/L | YP/X/g/g | PrX/g/Lh | PrP/g/Lh |
---|---|---|---|---|---|---|
Fed batch | 154 | 19.4 | 17.5 | 0.90 | 0.126 | 0.113 |
Repeated batch | 446 | 17.9(Σ99.4) | 13.2(Σ71.2) | 0.72 | 0.222 | 0.160 |
Continuous | 288 | 10.5 | 7.0 | 0.67 | 0.284 | 0.189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivušić, F.; Rezić, T.; Šantek, B. Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production. Molecules 2022, 27, 5866. https://doi.org/10.3390/molecules27185866
Ivušić F, Rezić T, Šantek B. Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production. Molecules. 2022; 27(18):5866. https://doi.org/10.3390/molecules27185866
Chicago/Turabian StyleIvušić, Franjo, Tonči Rezić, and Božidar Šantek. 2022. "Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production" Molecules 27, no. 18: 5866. https://doi.org/10.3390/molecules27185866
APA StyleIvušić, F., Rezić, T., & Šantek, B. (2022). Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production. Molecules, 27(18), 5866. https://doi.org/10.3390/molecules27185866