Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. Effect on Castor Oil-Induced Diarrhea
2.3. Effect on Intestinal Fluid Accumulation
2.4. Effect on Charcoal Meal Transit Time
2.5. Effect of Extracts and Rutin on Motility of Isolated Tissue Preparations
2.6. Anti H. pylori Effect
2.7. Effect on Ethanol-Induced Ulcer
2.8. H+/K+-ATPase Inhibition
2.9. Antioxidant Profile
2.10. Histopathological Examination
2.11. IHC Analysis
2.12. Effect on Inflammatory Markers
2.13. Quantification of mRNA Levels
2.14. Toxicity Studies
2.15. Molecular Docking
2.16. Molecular Dynamic Simulations
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Animals
4.3. Plant Material and Phytochemical Screening
4.4. Gas Chromatography Mass Spectrometry (GC-MS) Analysis
4.5. Castor-Oil Induced Diarrhea
4.6. Assessment of Intestinal Fluid Accumulation
4.7. Charcoal Meal Transit Time
4.8. Effect of Extracts and Rutin on Motility of Isolated Tissue Preparations
4.9. Anti-Helicobactor pylori (H. pylori) Activity
4.10. Ethanol-Induced Ulcer
4.11. H+/K+-ATPase Inhibitory Activity
4.12. Determination of Oxidative Stress Markers
4.13. Hematoxylin and Eosin (H&E) Staining and Immunohistochemistry (IHC)
4.14. Enzyme-Linked Immunosorbent Assay (ELISA)
4.15. Real Time-Polymerase Chain Reaction (RT-PCR)
- Rat-BetaActin-Forward: CCCGCGAGTACAACCTTCT
- Rat-BetaActin-Reverse: CGTCATCCATGGCGAACT
- H+/K+-ATPase Forward: TATGAATTGTACTCAGTGGA
- H+/K+-ATPase Reverse: TGGTCTGGTACTTCTGCT
4.16. Toxicity
4.17. In-Silico Studies
4.18. Molecular Dynamic (MD) Simulations
4.19. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Muhammad, I.; Luo, W.; Shoaib, R.M.; Li, G.-L.; Hassan, S.S.U.; Yang, Z.-H.; Xiao, X.; Tu, G.-L.; Yan, S.-K.; Ma, X.-P.; et al. Guaiane-type sesquiterpenoids from Cinnamomum migao H. W. Li: And their anti-inflammatory activities. Phytochemistry 2021, 190, 112850. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Xiao, Y.Z.; Hassan, S.S.U.; Xiao, X.; Yan, S.-K.; Guo, Y.-Q.; Ma, X.-P.; Jin, H.-Z. Three new guaiane-type sesquiterpenoids and a monoterpenoid from Litsea lancilimba Merr. Nat. Prod. Res. 2021, 36, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Bungau, S.G.; Popa, V.-C. Between religion and science: Some aspects: Concerning illness and healing in antiquity. Transylv. Rev. 2015, 26, 3–19. [Google Scholar]
- Khan, I.; Abbas, T.; Anjum, K.; Abbas, S.Q.; Shagufta, B.I.; Shah, S.A.A.; Akhter, N.; Hassan, S.S. Ul Antimicrobial potential of aqueous extract of Camellia sinensis against representative microbes. Pak. J. Pharm. Sci. 2019, 32, 631–636. [Google Scholar]
- Xiao, Y.; Zhu, S.; Wu, G.; ul Hassan, S.S.; Xie, Y.; Ishaq, M.; Sun, Y.; Yan, S.K.; Qian, X.-P.; Jin, H.-Z. Chemical Constituents of Vernonia parishii. Chem. Nat. Compd. 2020, 56, 134–136. [Google Scholar] [CrossRef]
- Glevitzky, I.; Dumitrel, G.A.; Glevitzky, M.; Pasca, B.; Otrisal, P.; Bungau, S.; Cioca, G.; Pantis, C.; Popa, M. Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds. Rev. De Chim. 2019, 70, 3103–3107. [Google Scholar] [CrossRef]
- Memariani, Z.; Abbas, S.Q.; ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res. 2021, 171, 105264. [Google Scholar] [CrossRef]
- Ansari, S.F.; Khan, A.-U.; Qazi, N.G.; Shah, F.A.; Naeem, K. In Vivo, Proteomic, and In Silico Investigation of Sapodilla for Therapeutic Potential in Gastrointestinal Disorders. BioMed Res. Int. 2019, 2019, 4921086. [Google Scholar] [CrossRef]
- Badea, M.; di Modugno, F.; Floroian, L.; Tit, D.M.; Restani, P.; Bungau, S.; Iovan, C.; Badea, G.E.; Aleya, L. Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses. Sci. Total Environ. 2019, 672, 129–140. [Google Scholar] [CrossRef]
- Prakash Mishra, A.; Sharifi-Rad, M.; Shariati, M.A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gusain, P.; et al. Bioactive compounds and health benefits of edible Rumex species—A review. Cell. Mol. Biol. Noisy-Le-Grand Fr. 2018, 64, 27–34. [Google Scholar] [CrossRef]
- Sahreen, S.; Khan, M.R.; Khan, R.A. Comprehensive assessment of phenolics and antiradical potential of Rumex hastatus D. Don. roots. BMC Complement. Altern. Med. 2014, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, S.M.; Farooq, U.; Gupta, A.P.; Lattoo, S.K. Phytochemical evaluation of major bioactive compounds in different cytotypes of five species of Rumex L. Ind. Crops Prod. 2017, 109, 897–904. [Google Scholar] [CrossRef]
- Jones, N.L.; Koletzko, S.; Goodman, K.; Bontems, P.; Cadranel, S.; Casswall, T.; Czinn, S.; Gold, B.D.; Guarner, J.; Elitsur, Y.; et al. Joint ESPGHAN/NASPGHAN Guidelines for the Management of Helicobacter pylori in Children and Adolescents (Update 2016). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Shams ul Hassan, S.; Ishaq, M.; Zhang, W.; Jin, H.-Z. An overview of the mechanisms of marine fungi-derived antiinflammatory and anti-tumor agents and their novel role in drug targeting. Curr. Pharm. Des. 2021, 27, 2605–2614. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.; Qazi, N.G.; Rehman, N.U.; Khan, A.U. Pharmacological investigation of brucine: Antiulcer potential. Front. Pharmacol. 2022, 13, 886433. [Google Scholar] [CrossRef] [PubMed]
- Kaithwas, G.; Majumdar, D.K. Evaluation of antiulcer and antisecretory potential of Linum usitatissimum fixed oil and possible mechanism of action. Inflammopharmacology 2010, 18, 137–145. [Google Scholar] [CrossRef]
- Nassar, M.I.; Mohamed, T.K.; Elshamy, A.I.; El-Toumy, S.A.; Abdel Lateef, A.M.; Farrag, A.-R.H. Chemical constituents and anti-ulcerogenic potential of the scales of Cynara scolymus (artichoke) heads. J. Sci. Food Agric. 2013, 93, 2494–2501. [Google Scholar] [CrossRef]
- Lai, W.-F. Development of Hydrogels with Self-Healing Properties for Delivery of Bioactive Agents. Mol. Pharm. 2021, 18, 1833–1841. [Google Scholar] [CrossRef]
- Rouf, A.S.S.; Islam, M.S.; Rahman, M.T. Evaluation of antidiarrhoeal activity Rumex maritimus root. J. Ethnopharmacol. 2003, 84, 307–310. [Google Scholar] [CrossRef]
- Rehman, N.; Mehmood, M.H.; Alkharfy, K.M.; Gilani, A.-H. Studies on antidiarrheal and antispasmodic activities of Lepidium sativum crude extract in rats. Phytother. Res. PTR 2012, 26, 136–141. [Google Scholar] [CrossRef]
- Artemieva, M.S.; Kuznetsov, V.I.; Manyakin, I.S.; Basova, E.A.; Kuznetsova, L.I. The Influence of Comorbid Endemic Goiter on the Quality of Life of Patients with Gastrointestinal Pathology. Psychiatr. Danub. 2021, 33, 622–624. [Google Scholar]
- Kordić, M.; Dragišić, V.; Šutalo, N.; Mišković, J.; Klupke Sarić, I.; Bogut, A.; Karin, M. Duodenal Metastasis of Clear Cell Renal Carcinoma Presenting with Gastrointestinal Bleeding. Psychiatr. Danub. 2021, 33, 97–98. [Google Scholar] [PubMed]
- Rehman, N.U.; Ansari, M.N.; Samad, A. In Silico, Ex Vivo and In Vivo Studies of Roflumilast as a Potential Antidiarrheal and Antispasmodic agent: Inhibition of the PDE-4 Enzyme and Voltage-gated Ca++ ion Channels. Molecules 2020, 25, 1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Li, X.; Yu, H.; Zhu, S.; He, Y.; Komatsu, K.; Guo, D.; Li, X.; Wang, J.; Luo, H.; et al. Gastroprotective effect of araloside A on ethanol- and aspirin-induced gastric ulcer in mice: Involvement of H(+)/K(+)-ATPase and mitochondrial-mediated signaling pathway. J. Nat. Med. 2019, 73, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Diao, D.; Diao, F.; Xiao, B.; Liu, N.; Zheng, D.; Li, F.; Yang, X. Bayes Conditional Probability-Based Causation Analysis between Gestational Diabetes Mellitus (GDM) and Pregnancy-Induced Hypertension (PIH): A Statistic Case Study in Harbin, China. J. Diabetes Res. 2022, 2022, 2590415. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, F. Core-shell chitosan microsphere with antimicrobial and vascularized functions for promoting skin wound healing. Mater. Des. 2021, 204, 109683. [Google Scholar] [CrossRef]
- Shams ul Hassan, S.; Jin, H.Z.; Abu-Izneid, T.; Rauf, A.; Ishaq, M.; Suleria, H.A.R. Stress-driven discovery in the natural products: A gateway towards new drugs. Biomed. Pharmacother. 2019, 109, 459–467. [Google Scholar] [CrossRef]
- Hassan, S.S.U.; Zhang, W.-D.; Jin, H.-Z.; Basha, S.H.; Priya, S.V.S.S. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2. J. Biomol. Struct. Dyn. 2022, 40, 484–498. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, X.-C.; ul Hassan, S.S.; Zhen, X.-Y.; Ishaq, M.; Yan, S.; Yuan, X.; Li, H.-L.; Jin, H.-Z. One new sesquiterpene and one new iridoid derivative from Valeriana amurensis. Phytochem. Lett. 2019, 32, 6–9. [Google Scholar] [CrossRef]
- Shams ul Hassan, S.; Abbas, S.Q.; Hassan, M.; Jin, H.-Z. Computational Exploration of Anti-Cancer Potential of Guaiane Dimers from Xylopia vielana by Targeting B-Raf Kinase Using Chemo-Informatics, Molecular Docking and MD Simulation Studies. Anti-Cancer Agents Med. Chem. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Saleem, U.; Amin, S.; Ahmad, B.; Azeem, H.; Anwar, F.; Mary, S. Acute oral toxicity evaluation of aqueous ethanolic extract of Saccharum munja Roxb. roots in albino mice as per OECD 425 TG. Toxicol. Rep. 2017, 4, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F. Non-conjugated polymers with intrinsic luminescence for drug delivery. J. Drug Deliv. Sci. Technol. 2020, 59, 101916. [Google Scholar] [CrossRef]
- Qazi, N.Q.; Khan, A.-U.; Abbasi, S.W.; Malik, I.; Naeem, K. Effect of Rumex dentatus on Gastrointestinal Protection and Toxicology in Rodents via Investigating H+ /K+ -ATPase, Calcium Channels, and PDE Mediated Signaling. Front. Pharmacol. 2022, 13, 936161. [Google Scholar] [CrossRef] [PubMed]
- Ul Hassan, S.S.; Muhammad, I.; Abbas, S.Q.; Hassan, M.; Majid, M.; Jin, H.Z.; Bungau, S. Stress driven discovery of natural products from actinobacteria with anti-oxidant and cytotoxic activities including docking and admet properties. Int. J. Mol. Sci. 2021, 22, 1432. [Google Scholar] [CrossRef]
- Shams ul Hassan, S.; Qamar Abbas, S.; Ali, F.; Ishaq, M.; Bano, I.; Hassan, M.; Jin, H.-Z.; Bungau, S.G. A Comprehensive In Silico Exploration of Pharmacological Properties, Bioactivities, Molecular Docking, and Anticancer Potential of Vieloplain F from Xylopia vielana Targeting B-Raf Kinase. Molecules 2022, 27, 917. [Google Scholar] [CrossRef]
- Muhammad, I.; Shams ul Hassan, S.; Cheung, S.; Li, X.; Wang, R.; Zhang, W.D.; Yan, S.K.; Zhang, Y.; Jin, H.Z. Phytochemical study of Ligularia subspicata and valuation of its anti-inflammatory activity. Fitoterapia 2021, 148, 104800. [Google Scholar] [CrossRef]
- Ansari, S.F.; Khan, A.U.; Qazi, N.G.; Shah, F.A.; Naeem, K. Proteomic Analysis and In Vivo Studies Reveal the Potential Gastroprotective Effects of CHCl3 and Aqueous Extracts of Ficus palmata. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Astudillo, A.; Hong, E.; Bye, R.; Navarrete, A. Antispasmodic activity of extracts and compounds of Acalypha phleoides Cav. Phytother. Res. PTR 2004, 18, 102–106. [Google Scholar] [CrossRef]
- Gilani, A.H.; Khan, A.; Subhan, F.; Khan, M. Antispasmodic and bronchodilator activities of St John’s wort are putatively mediated through dual inhibition of calcium influx and phosphodiesterase. Fundam. Clin. Pharmacol. 2005, 19, 695–705. [Google Scholar] [CrossRef]
- Noor, A.; Qazi, N.G.; Nadeem, H.; Khan, A.-U.; Paracha, R.Z.; Ali, F.; Saeed, A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem. Cent. J. 2017, 11, 85. [Google Scholar] [CrossRef]
- Razzaq, S.; Minhas, A.M.; Qazi, N.G.; Nadeem, H.; Khan, A.U.; Ali, F.; Bungau, S. Novel Isoxazole Derivative Attenuates Ethanol-Induced Gastric Mucosal Injury through Inhibition of H+/K+-ATPase Pump, Oxidative Stress and Inflammatory Pathways. Molecules 2022, 27, 5065. [Google Scholar] [CrossRef] [PubMed]
Phytochemical. Constituents | Rh.Cr | Rh.nHex | Rh.ETAC | Rh.Aq |
---|---|---|---|---|
Alkaloids | + | + | + | + |
Anthraquinones | + | + | + | − |
Cardiac glycosides | + | − | + | − |
Coumarins | + | + | − | − |
Flavonoids | + | + | + | − |
Saponins | + | + | + | + |
Tannins | + | − | + | − |
Terpenoids | + | − | − | + |
Samples | R.Time | Area | Conc (%) |
---|---|---|---|
Rh.Cr | |||
2-Propylmalonic acid | 6.584 | 14,101 | 6.42 |
Alpha-D-Galactopyranose methyl glycoside | 16.701 | 76,145 | 34.68 |
Nonanoic acid | 16.847 | 14,703 | 6.70 |
Tetradecanoic acid | 21.299 | 10,318 | 4.70 |
Tridecanoic acid, methyl ester | 24.769 | 14,889 | 6.78 |
n-Hexadecanoic acid | 25.406 | 48,840 | 22.24 |
9,12-Octadecadienoic acid, methyl ester | 27.993 | 7974 | 3.63 |
11-Octadecenoic acid, methyl ester | 28.113 | 13,588 | 6.19 |
3-Tetradecyne | 28.660 | 7751 | 3.53 |
10-Undecenal | 28.770 | 11,261 | 5.13 |
Octadecanoic acid | 29.258 | 6500 | 2.88 |
Rh.n-Hex | |||
Decane | 5.994 | 1,489,269 | 4.34 |
Undecane | 7.178 | 379,968 | 1.11 |
4-Methylundecane | 7.268 | 406,539 | 1.18 |
2-Methylundecane | 7.365 | 746,639 | 2.17 |
3-Methyltridecane | 7.518 | 437,725 | 1.27 |
Rutin | 8.189 | 7,806,882 | 18.32 |
2,6-Dimethylundecene | 8.526 | 1,234,816 | 3.60 |
4-Methyltridecane | 9.602 | 627,733 | 1.83 |
2-Methylheptadecane | 9.716 | 983,544 | 2.86 |
3-Methyldodecane | 9.881 | 621,852 | 1.81 |
2-Methyldecane | 9.943 | 760,818 | 2.22 |
Heptacosanoic acid, methyl ester | 11.158 | 171,956 | 0.50 |
Dodecane | 11.843 | 258,222 | 0.75 |
2,4-Dimethylundecane | 11.918 | 216,800 | 0.63 |
2-Methyltridecane | 12.163 | 301,156 | 0.88 |
3-Methyltridecane | 12.334 | 196,885 | 0.57 |
2,6-Dimethylheptadecane | 12.491 | 212,684 | 0.62 |
Hexadecane | 14.586 | 236,082 | 0.69 |
Tridecanoic acid, methyl ester | 16.039 | 1,944,396 | 5.66 |
1-Fluorodecane | 17.665 | 105,610 | 0.31 |
Tridecane | 17.827 | 1,019,712 | 2.97 |
Methyl tetradecanoate | 20.598 | 1,057,755 | 3.08 |
Pentadecanoic acid, 14-methyl-,methyl ester | 24.805 | 8,207,882 | 23.91 |
Hexadecanoic acid, ethyl ester | 25.784 | 361,201 | 1.05 |
Hexadecanoic acid, 15-methyl-,methyl ester | 26.721 | 164,157 | 0.48 |
9,12-Octadecadienoic acid, methyl ester, (E,E) | 28.044 | 5,433,055 | 15.83 |
6-Octadecenoic acid, methyl ester, (Z) | 28.164 | 4,485,856 | 13.07 |
11-Octadecenoic acid, methyl ester | 28.236 | 208,642 | 0.61 |
Phytol | 28.367 | 282,891 | 0.82 |
Hexadecanoic, 15-methyl-, methyl ester | 28.621 | 1,546,940 | 4.51 |
2-Methyl-Z,Z-3, 13-octadecadienol | 29.457 | 230,898 | 0.67 |
Rh.ETAC | |||
Decane | 6.004 | 13,295 | 3.17 |
Octanoic acid | 7.429 | 4616 | 1.10 |
Dodecane | 8.194 | 9079 | 2.16 |
Pentadecanoic acid | 16.853 | 4850 | 1.16 |
Phthalic acid, 2-ethylhexyl isohexyl ester | 20.368 | 326,359 | 77.80 |
n-Hexadecanoic acid | 25.412 | 38,710 | 9.23 |
6-Octadecenoic acid, methyl ester, (Z) | 28.108 | 8104 | 1.93 |
Oleic acid | 28.777 | 14,458 | 3.45 |
Treatment (mg/kg) | No of Wet Feces | Total No of Feces | Average Weight of Wet Feces (gm) | Average Weight of Total Feces (gm) | % Inhibition of Defecation | % WWFO | % WTFO |
---|---|---|---|---|---|---|---|
Saline (10 mL/kg) + Castor-oil (10 mL/kg) | 7.2 ± 0.3 | 8.4 ± 0.24 | 0.44 ± 0.05 | 0.5 ± 0.01 | 0 | 0 | 0 |
Rh.Cr (50 mg/kg) + Castor-oil (10 mL/kg) | 4.2 ± 0.09 | 6 ± 0.24 | 0.26 ± 0.06 | 0.38 ± 0.05 | 41.6 ** | 59.09 | 76 |
Rh.Cr (100 mg/kg) + Castor-oil (10 mL/kg) | 1.4 ± 0.17 | 4.2 ± 0.1 | 0.06 ± 0.04 | 0.25 ± 0.03 | 80.5 *** | 13.6 | 50 |
Rh.Cr (300 mg/kg) + Castor-oil (10 mL/kg) | 0 ± 0.0 | 2.5 ± 0.05 | 0 ± 0.0 | 0.14 ± 0.04 | 100 *** | 0 | 28 |
Rh.n-Hex (50 mg/kg) + Castor-oil (10 mL/kg) | 3.9 ± 0.09 | 6.8 ± 0.2 | 0.24 ± 0.18 | 0.39 ± 0.11 | 45.8 ** | 54.5 | 78 |
Rh.n-Hex (100 mg/kg) + Castor-oil (10 mL/kg) | 2.9 ± 0.05 | 5.5 ± 0.3 | 0.16 ± 0.27 | 0.32 ± 0.13 | 59.7 ** | 36.36 | 64 |
Rh.n-Hex (300 mg/kg) + Castor-oil (10 mL/kg) | 1.4 ± 0.18 | 4 ± 0.06 | 0.06 ± 0.09 | 0.23 ± 0.19 | 80.5 *** | 13.6 | 46 |
Rh.ETAC (50 mg/kg) + Castor-oil (10 mL/kg) | 5.5 ± 0.5 | 6.2 ± 0.4 | 0.33 ± 0.1 | 0.41 ± 0.12 | 23.6 * | 75 | 82 |
Rh.ETAC (100 mg/kg) + Castor-oil (10 mL/kg) | 4.5 ± 0.24 | 5.2 ± 0.2 | 0.29 ± 0.04 | 0.31 ± 0.03 | 37.5 ** | 62 | 67.2 |
Rh.ETAC (300 mg/kg) + Castor-oil (10 mL/kg) | 2.7 ± 0.23 | 5.3 ± 0.32 | 0.13 ± 0.45 | 0.3 ± 0.04 | 62.5 *** | 29.5 | 60 |
Rh.Aq (50 mg/kg) + Castor-oil (10 mL/kg) | 7.2 ± 0.08 | 8.2 ± 0.12 | 0.44 ± 0.01 | 0.49 ± 0.05 | 0 | 100 | 98 |
Rh.Aq (100 mg/kg) + Castor-oil (10 mL/kg) | 6.8 ± 0.05 | 7.5 ± 0.1 | 0.41 ± 0.06 | 0.45 ± 0.05 | 5.55 | 93.1 | 90 |
Rh.Aq (300 mg/kg) + Castor-oil (10 mL/kg) | 6.5 ± 0.22 | 7.2 ± 0.1 | 0.40 ± 0.03 | 0.44 ± 0.05 | 9.72 | 90.1 | 88 |
Rutin (50 mg/kg) + Castor-oil (10 mL/kg) | 4.2 ± 0.2 | 7 ± 0.30 | 0.27 ± 0.08 | 0.39 ± 0.05 | 41.6 ** | 61.36 | 78 |
Rutin (100 mg/kg) + Castor-oil (10 mL/kg) | 1.4 ± 0.24 | 4.5 ± 0.16 | 0.07 ± 0.04 | 0.26 ± 0.01 | 80.5 *** | 15.9 | 52 |
Rutin (200 mg/kg) + Castor-oil (10 mL/kg) | 0 ± 0.0 | 2.7 ± 0.03 | 0 ± 0.0 | 0.15 ± 0.02 | 100 *** | 0 | 30 |
Loperamide (2 mg/kg) + Castor-oil (10 mL/kg) | 0 ± 0.0 | 2.2 ± 0.2 | 0 ± 0.0 | 0.11 ± 0.03 | 100 *** | 0 | 22 |
Treatment (mg/kg) | % Inhibition |
---|---|
Saline (10 mL/kg) | 89.7 |
Castor-oil (10 mL/kg) | 126.8 ### |
Rh.Cr (50 mg/kg) + Castor-oil (10 mL/kg) | 119 * |
Rh.Cr (100 mg/kg) + Castor-oil (10 mL/kg) | 105 ** |
Rh.Cr (300 mg/kg) + Castor-oil (10 mL/kg) | 85 *** |
Rh.nHex (50 mg/kg) + Castor-oil (10 mL/kg) | 120.6 |
Rh.nHex (100 mg/kg) + Castor-oil (10 mL/kg) | 110 ** |
Rh.nHex (300 mg/kg) + Castor-oil (10 mL/kg) | 92.8 *** |
Rh.ETAC (50 mg/kg) + Castor-oil (10 mL/kg) | 118 * |
Rh.ETAC (100 mg/kg) + Castor-oil (10 mL/kg) | 99 *** |
Rh.ETAC (300 mg/kg) + Castor-oil (10 mL/kg) | 78 *** |
Rh.Aq (50 mg/kg) + Castor-oil (10 mL/kg) | 124 |
Rh.Aq (100 mg/kg) + Castor-oil (10 mL/kg) | 122 |
Rh.Aq (300 mg/kg) + Castor-oil (10 mL/kg) | 118 * |
Rutin (50 mg/kg) + Castor-oil (10 mL/kg) | 109 ** |
Rutin (100 mg/kg) + Castor-oil (10 mL/kg) | 85 *** |
Rutin (200 mg/kg) + Castor-oil (10 mL/kg) | 75 *** |
Atropine (0.1 mg/kg) + Castor-oil (10 mL/kg) | 74.10 *** |
Treatment (mg/kg) | Mean Length of Intestine (cm) | Distance Moved by Charcoal (cm) | Peristaltic Index (PI) (%) | % Inhibition |
---|---|---|---|---|
Saline (10 mL/kg) | 93 | 0 | 0 | 0 |
Charcoal (25 mg/kg) | 92.6 | 90 | 97.1 ### | 0 |
Rh.Cr (50 mg/kg) + Charcoal (25 mg/kg) | 94 | 65 | 69.1 | 28.83 * |
Rh.Cr (100 mg/kg) + Charcoal (25 mg/kg) | 92.1 | 46 | 49.9 | 48.6 ** |
Rh.Cr (300 mg/kg) + Charcoal (25 mg/kg) | 94 | 19 | 20.21 | 79.18 *** |
Rh.n-Hex (50 mg/kg) + Charcoal (25 mg/kg) | 96 | 78.8 | 82.08 | 15.4 * |
Rh.n-Hex (100 mg/kg) + Charcoal (25 mg/kg) | 94 | 66.9 | 71.17 | 26.70 * |
Rh.n-Hex (300 mg/kg) + Charcoal (25 mg/kg) | 95 | 54.4 | 57.2 | 41.09 ** |
Rh.ETAC (50 mg/kg) + Charcoal (25 mg/kg) | 84 | 69 | 82.14 | 15.40 * |
Rh.ETAC (100 mg/kg) + Charcoal (25 mg/kg) | 92.1 | 41 | 44.51 | 54.16 ** |
Rh.ETAC (300 mg/kg) + Charcoal (25 mg/kg) | 85 | 28 | 32.94 | 66.07 *** |
Rh.Aq (50 mg/kg) + Charcoal (25 mg/kg) | 94 | 90 | 95.7 | 1.44 |
Rh.Aq (100 mg/kg) + Charcoal (25 mg/kg) | 95 | 86.6 | 91.1 | 6.1 |
Rh.Aq (300 mg/kg) + Charcoal (25 mg/kg) | 98 | 86.6 | 88 | 9.37 |
Rutin (50 mg/kg) + Charcoal (25 mg/kg) | 83 | 71 | 85.5 | 11.94 * |
Rutin (100 mg/kg) + Charcoal (25 mg/kg) | 92 | 60 | 65.2 | 32.85 ** |
Rutin (200 mg/kg) + Charcoal (25 mg/kg) | 94 | 23.6 | 25.1 | 74.1 *** |
Atropine (0.1 mg/kg, i.p.) + Charcoal (25 mg/kg) | 90.8 | 16.4 | 18.06 | 81.40 *** |
Samples | MIC (mg/mL) | Zone of Inhibition (mm) |
---|---|---|
Rh.Cr | 0 | 0 |
Rh.n-Hex | 2.5 | 10.66 ± 0.62 |
Rh.ETAC | 0.6 | 25.33 ± 0.33 |
Rh.Aq | 0 | 0 |
Rutin | 0.6 | 31 ± 0.66 |
Treatment (mg/kg) | Ulcer Index | % Inhibition |
---|---|---|
Saline (10 mL/kg) | 0 ± 0.0 | - |
Ethanol (1 mL/100 g) | 10 ± 0.3 ### | 0 |
Rh.Cr (50 mg/kg) + Ethanol (1 mL/100 g) | 7.0 ± 0.31 *** | 30 |
Rh.Cr (100 mg/kg) + Ethanol (1 mL/100 g) | 1.5 ± 0.2 *** | 87 |
Rh.Cr (300 mg/kg) + Ethanol (1 mL/100 g) | 0.6 ± 0.24 *** | 92 |
Rh.n-Hex (50 mg/kg) + Ethanol (1 mL/100 g) | 5.5 ± 0.05 *** | 47 |
Rh.n-Hex (100 mg/kg) + Ethanol (1 mL/100 g) | 2.4 ± 0.20 *** | 76 |
Rh.n-Hex (300 mg/kg) + Ethanol (1 mL/100 g) | 0 ± 0.0 *** | 100 |
Rh.ETAC (50 mg/kg) + Ethanol (1 mL/100 g) | 6.5 ± 0.25 *** | 35 |
Rh.ETAC (100 mg/kg) + Ethanol (1 mL/100 g) | 4.8 ± 0.24 *** | 52 |
Rh.ETAC (300 mg/kg) + Ethanol (1 mL/100 g) | 2.8 ± 0.07 *** | 72 |
Rh.Aq (50 mg/kg) + Ethanol (1 mL/100 g) | 9.8 ± 0.1 | 2 |
Rh.Aq (100 mg/kg) + Ethanol (1 mL/100 g) | 10 ± 0.2 | 1.96 |
Rh.Aq (300 mg/kg) + Ethanol (1 mL/100 g) | 9.6 ± 0.24 | 5.88 |
Rutin (50 mg/kg) + Ethanol (1 mL/100 g) | 4.52 ± 0.14 *** | 56.8 |
Rutin (100 mg/kg) + Ethanol (1 mL/100 g) | 2.86 ± 0.02 *** | 73.4 |
Rutin (200 mg/kg) + Ethanol (1 mL/100 g) | 1.26 ± 0.12 *** | 89.4 |
Omeprazole (20 mg/kg) + Ethanol (1 mL/100 g) | 0.4 ± 0.04 *** | 96.2 |
Organs | Control | Rh.Cr (2000 mg/kg) |
---|---|---|
Heart | 0.36 ± 0.1 g | 0.42 ± 0.4 g |
Kidney | 1.1 ± 0.1 g | 1.14 ± 0.3 g |
Liver | 6.5 ± 0.3 g | 6.9 ± 0.2 g |
Brain | 1.4 ± 0.2 g | 1.49 ± 0.1 g |
Target Protein | E-Value (Kcal/mol) | No of H Bonds | Binding Residues Forming H Bonds | |
---|---|---|---|---|
Rutin | H+/K+-ATPase | −8.7 | 11 | ARG A:846, ARG A:949, ARG A:844, ARG A:775, ASN A:847, TYR A:1033, TYR A:1032, LYS A:782, PRO A:845 |
Voltage-gated L-type calcium channel | −9.4 | 6 | ARG A:276, GLN A:301, PHE A:308, SER A:226, VAL A:224 | |
Omeprazole | H+/K+-ATPase | −7.8 | 2 | GLN A:110, GLY A:108 |
Verapamil | Voltage-gated L-type calcium channel | −6.2 | 2 | GLU A:309, SER A:226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qazi, N.G.; Khan, A.-u.; Abbasi, S.W.; Shah, F.A.; Rasheed, F.; Ali, F.; Hassan, S.S.u.; Bungau, S. Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs. Molecules 2022, 27, 5919. https://doi.org/10.3390/molecules27185919
Qazi NG, Khan A-u, Abbasi SW, Shah FA, Rasheed F, Ali F, Hassan SSu, Bungau S. Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs. Molecules. 2022; 27(18):5919. https://doi.org/10.3390/molecules27185919
Chicago/Turabian StyleQazi, Neelum Gul, Arif-ullah Khan, Sumra Wajid Abbasi, Fawad Ali Shah, Faisal Rasheed, Fawad Ali, Syed Shams ul Hassan, and Simona Bungau. 2022. "Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs" Molecules 27, no. 18: 5919. https://doi.org/10.3390/molecules27185919
APA StyleQazi, N. G., Khan, A. -u., Abbasi, S. W., Shah, F. A., Rasheed, F., Ali, F., Hassan, S. S. u., & Bungau, S. (2022). Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs. Molecules, 27(18), 5919. https://doi.org/10.3390/molecules27185919