1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil’s Food Quality with Respect to Its Oxidation Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Methodologies
2.3. Statistical Treatment
3. Results and Discussion
4. Conclusions
5. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Yusta, A.; Goicoechea, E.; Guillén, M.D. A Review of Thermo-Oxidative Degradation of Food Lipids Studied by 1H NMR Spectroscopy: Influence of Degradative Conditions and Food Lipid Nature. Compr. Rev. Food. Sci. Food Saf. 2014, 13, 838–859. [Google Scholar] [CrossRef]
- Gresley, A.L.; Ampem, G.; Grootveld, M.; Percival, C.B.; Naughton, P.D. Characterisation of Peroxidation Products Arising from Culinary Oils Exposed to Continuous and Discontinuous Thermal Degradation Processes. Food Funct. 2019, 10, 7952–7966. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.R.; Decker, E.A. The Role of Oxygen in Lipid Oxidation Reactions: A Review. Annu. Rev. Food Sci. Technol. 2015, 6, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Maccotta, A.; Pasquale, C.; Alonzo, G. Supramolecular Organization of Triglycerides in Extra-Virgin Olive Oils as Assessed by NMR Relaxometry. Fresenius Environ. Bull. 2010, 19, 2077–2082. [Google Scholar]
- Capitani, D.; Sobolev, A.P.; Di Tullio, V.; Mannina, L.; Proietti, N. Portable NMR in Food Analysis. Chem. Biol. Technol. Agric. 2017, 4, 17. [Google Scholar] [CrossRef]
- Rudszuck, T.; Förster, E.; Nirschl, H.; Guthausen, G. Low-Field NMR for Quality Control on Oils. Magn. Reson. Chem. 2019, 57, 777–793. [Google Scholar] [CrossRef]
- Blümich, B. Low-Field and Benchtop NMR. J. Magn. Reson. 2019, 306, 27–35. [Google Scholar] [CrossRef]
- Resende, M.T.; Campisi-Pinto, S.; Linder, C.; Wiesman, Z. Multidimensional Proton Nuclear Magnetic Resonance Relaxation Morphological and Chemical Spectrum Graphics for Monitoring and Characterization of Polyunsaturated Fatty-Acid Oxidation. J. Am. Oil. Chem. Soc. 2019, 96, 125–135. [Google Scholar] [CrossRef]
- Colnago, L.A.; Wiesman, Z.; Pages, G.; Musse, M.; Monaretto, T.; Windt, C.W.; Rondeau-Mouro, C. Low Field, Time Domain NMR in the Agriculture and Agrifood Sectors: An Overview of Applications in Plants, Foods and Biofuels. J. Magn. Reson. 2021, 323, 106899. [Google Scholar] [CrossRef]
- Hills, B.P. Applications of Low-Field NMR to Food Science. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2006; Volume 58, pp. 177–230. [Google Scholar]
- Hwang, H.-S. Application of NMR Spectroscopy for Foods and Lipids. In Advances in NMR Spectroscopy for Lipid Oxidation Assessment; Hwang, H.-S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–13. ISBN 978-3-319-54196-9. [Google Scholar]
- Kirtil, E.; Cikrikci, S.; McCarthy, M.J.; Oztop, M.H. Recent Advances in Time Domain NMR & MRI Sensors and Their Food Applications. Curr. Opin. Food Sci. 2017, 17, 9–15. [Google Scholar] [CrossRef]
- Tang, F.; Vasas, M.; Hatzakis, E.; Spyros, A. Chapter Five—Magnetic Resonance Applications in Food Analysis. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 98, pp. 239–306. [Google Scholar]
- Resende, M.T.; Osheter, T.; Linder, C.; Wiesman, Z. Proton Low Field NMR Relaxation Time Domain Sensor for Monitoring of Oxidation Stability of PUFA-Rich Oils and Emulsion Products. Foods 2021, 10, 1385. [Google Scholar] [CrossRef] [PubMed]
- Osheter, T.; Linder, C.; Wiesman, Z. Time Domain (TD) Proton NMR Analysis of the Oxidative Safety and Quality of Lipid-Rich Foods. Biosensors 2022, 12, 230. [Google Scholar] [CrossRef]
- Zhang, D.; Haputhanthri, R.; Ansar, S.M.; Vangala, K.; De Silva, H.I.; Sygula, A.; Saebo, S.; Pittman, C.U. Ultrasensitive Detection of Malondialdehyde with Surface-Enhanced Raman Spectroscopy. Anal. Bioanal. Chem. 2010, 398, 3193–3201. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Gladden, L.F.; Chandrasekera, T.C.; Fordham, E.J. Low-Field Permanent Magnets for Industrial Process and Quality Control. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 76, 1–60. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Zhang, M. Recent Developments in the Food Quality Detected by Non-Invasive Nuclear Magnetic Resonance Technology. Crit. Rev. Food. Sci. Nutr. 2019, 59, 2202–2213. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Guillén, M.D.; Goicoechea, E. Detection of Primary and Secondary Oxidation Products by Fourier Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (NMR) in Sunflower Oil during Storage. J. Agric. Food Chem. 2007, 55, 10729–10736. [Google Scholar] [CrossRef]
- Guillén, M.D.; Uriarte, P.S. Simultaneous Control of the Evolution of the Percentage in Weight of Polar Compounds, Iodine Value, Acyl Groups Proportions and Aldehydes Concentrations in Sunflower Oil Submitted to Frying Temperature in an Industrial Fryer. Food Control 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. Monitoring of Heat-Induced Degradation of Edible Oils by Proton NMR. Eur. J. Lipid Sci. Technol. 2008, 110, 52–60. [Google Scholar] [CrossRef]
- Ancora, D.; Milavec, J.; Gradišek, A.; Cifelli, M.; Sepe, A.; Apih, T.; Zalar, B.; Domenici, V. Sensitivity of Proton NMR Relaxation and Proton NMR Diffusion Measurements to Olive Oil Adulterations with Vegetable Oils. J. Agric. Food Chem. 2021, 69, 12081–12088. [Google Scholar] [CrossRef]
- Frankel, E.N. Methods to Determine Extent of Oxidation. In Lipid Oxidation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 99–127. ISBN 978-0-9531949-8-8. [Google Scholar]
- Shahidi, F.; Zhong, Y. Lipid Oxidation: Measurement Methods. In Bailey’s Industrial Oil and Fat Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; ISBN 978-0-471-67849-6. [Google Scholar]
- Shantha, N.C.; Decker, E.A. Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Barriuso, B.; Astiasarán, I.; Ansorena, D. A Review of Analytical Methods Measuring Lipid Oxidation Status in Foods: A Challenging Task. Eur. Food Res. Technol. 2013, 236, 1–15. [Google Scholar] [CrossRef]
- Barthel, G.; Grosch, W. Peroxide Value Determination—Comparison of Some Methods. J. Am. Oil. Chem. Soc. 1974, 51, 540–544. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Yesiltas, B.; Sørensen, A.-D.M. Lipid Oxidation and Traditional Methods for Evaluation. In Omega-3 Delivery Systems; García-Moreno, P.J., Jacobsen, C., Sørensen, A.-D.M., Yesiltas, B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 183–200. ISBN 978-0-12-821391-9. [Google Scholar]
- Acrylamide. Available online: https://www.food.gov.uk/safety-hygiene/acrylamide (accessed on 22 March 2022).
- Khor, Y.P.; Hew, K.S.; Abas, F.; Lai, O.M.; Cheong, L.Z.; Nehdi, I.A.; Sbihi, H.M.; Gewik, M.M.; Tan, C.P. Oxidation and Polymerization of Triacylglycerols: In-Depth Investigations towards the Impact of Heating Profiles. Foods 2019, 8, 475. [Google Scholar] [CrossRef] [PubMed]
- Ajmal, M.; Nadeem, M.; Imran, M.; Junaid, M. Lipid Compositional Changes and Oxidation Status of Ultra-High Temperature Treated Milk. Lipids Health. Dis. 2018, 17, 227. [Google Scholar] [CrossRef]
- Resende, M.T.; Linder, C.; Wiesman, Z. Alkyl Tail Segments Mobility as a Marker for Omega-3 Polyunsaturated Fatty Acid-Rich Linseed Oil Oxidative Aging. J. Am. Oil. Chem. Soc. 2020, 97, 1283–1297. [Google Scholar] [CrossRef]
- Resende, M.T.; Linder, C.; Wiesman, Z. 1H LF-NMR Energy Relaxation Time Characterization of the Chemical and Morphological Structure of PUFA-Rich Linseed Oil During Oxidation with and Without Antioxidants. Eur. J. Lipid. Sci. Technol. 2019, 121, 1800339. [Google Scholar] [CrossRef]
- Resende, M.T.; Linder, C.; Wiesman, Z. Low-Field Nuclear Magnetic Resonance Time Domain Characterization of Polyunsaturated Fatty Acid–Rich Linseed and Fish Oil Emulsions during Thermal Air Oxidation. J. Am. Oil. Chem. Soc. 2021, 98, 495–508. [Google Scholar] [CrossRef]
- Merkx, D.W.H.; Hong, G.T.S.; Ermacora, A.; van Duynhoven, J.P.M. Rapid Quantitative Profiling of Lipid Oxidation Products in a Food Emulsion by 1H NMR. Anal. Chem. 2018, 90, 4863–4870. [Google Scholar] [CrossRef]
- Wann, A.I.; Percival, B.C.; Woodason, K.; Gibson, M.; Vincent, S.; Grootveld, M. Comparative 1H NMR-Based Chemometric Evaluations of the Time-Dependent Generation of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Laboratory-Simulated Shallow Frying Episodes: Differential Patterns Observed for Omega-3 Fatty Acid-Containing Soybean Oils. Foods 2021, 10, 2481. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. Monitoring the Oxidation of Unsaturated Oils and Formation of Oxygenated Aldehydes by Proton NMR. Eur. J. Lipid Sci. Technol. 2005, 107, 36–47. [Google Scholar] [CrossRef]
- Berman, P.; Meiri, N.; Linder, C.; Wiesman, Z. 1H Low Field Nuclear Magnetic Resonance Relaxometry for Probing Biodiesel Autoxidation. Fuel 2016, 177, 315–325. [Google Scholar] [CrossRef]
- Meiri, N.; Berman, P.; Colnago, L.A.; Moraes, T.B.; Linder, C.; Wiesman, Z. Liquid-Phase Characterization of Molecular Interactions in Polyunsaturated and n-Fatty Acid Methyl Esters by 1H Low-Field Nuclear Magnetic Resonance. Biotechnol. Biofuels 2015, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Berman, P.; Levi, O.; Parmet, Y.; Saunders, M.; Wiesman, Z. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods. Concepts Magn. Reson. A Bridg. Educ. Res. 2013, 42, 72–88. [Google Scholar] [CrossRef]
- Campisi-Pinto, S.; Levi, O.; Benson, D.; Cohen, M.; Resende, M.T.; Saunders, M.; Linder, C.; Wiesman, Z. Analysis of the Regularization Parameters of Primal–Dual Interior Method for Convex Objectives Applied to 1H Low Field Nuclear Magnetic Resonance Data Processing. Appl. Magn. Reson. 2018, 49, 1129–1150. [Google Scholar] [CrossRef]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Comparison of the Oxidative Stability of Linseed (Linum Usitatissimum L.) Oil by Pressure Differential Scanning Calorimetry and Rancimat Measurements. J. Food Sci. Technol. 2016, 53, 3986–3995. [Google Scholar] [CrossRef]
- Orlova, Y.; Harmon, R.E.; Broadbelt, L.J.; Iedema, P.D. Review of the Kinetics and Simulations of Linseed Oil Autoxidation. Prog. Org. Coat. 2021, 151, 106041. [Google Scholar] [CrossRef]
- Boerkamp, V.J.P.; Merkx, D.W.H.; Wang, J.; Vincken, J.-P.; Hennebelle, M.; van Duynhoven, J.P.M. Quantitative Assessment of Epoxide Formation in Oil and Mayonnaise by 1H-13C HSQC NMR Spectroscopy. Food Chem. 2022, 390, 133145. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Comp. Rev. Food. Sci. Food. Safety 2006, 5, 169–186. [Google Scholar] [CrossRef]
A | Time of Heating (h) | 0 | 24 | 48 | 72 | 96 | 120 | ||||||||||||
PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | ||
(mmol/kg) | (mmol/kg) | (mmol/kg) | (mmol/kg) | (mmol/kg) | (mmol/kg) | ||||||||||||||
Saturated FA: | |||||||||||||||||||
Butter | 6.9 | 1.12 | 14.93 | 9.14 | 1.39 | 19.68 | 11.53 | 2.19 | 25.26 | 8.53 | 2.33 | 19.4 | 7.32 | 3.12 | 17.75 | 8.66 | 4.84 | 22.17 | |
Coconut oil | 8.18 | 0.9 | 17.25 | 7.03 | 1.2 | 15.26 | 7.83 | 1.29 | 16.96 | 6.54 | 1.38 | 14.45 | 5.46 | 2.05 | 12.96 | 6.11 | 2.63 | 14.84 | |
Mono: | |||||||||||||||||||
Olive oil | 6.48 | 8.9 | 21.86 | 16.44 | 10.27 | 43.16 | 56.08 | 12.46 | 124.63 | 107.38 | 12.9 | 227.66 | 62.12 | 12.77 | 137.02 | 155.24 | 34.09 | 344.58 | |
Canola oil | 7.31 | 0.87 | 15.48 | 16.44 | 5.42 | 38.31 | 56.44 | 26.48 | 139.37 | 107.38 | 41.18 | 255.94 | 206.53 | 157.45 | 570.5 | 239.97 | 181.75 | 661.69 | |
Poly: | |||||||||||||||||||
Soy oil | 7.38 | 0.65 | 15.41 | 40.6 | 9.82 | 91.01 | 123.72 | 31.94 | 279.38 | 237.05 | 126.58 | 600.68 | 237.62 | 233.56 | 708.81 | 252.86 | 295.16 | 800.87 | |
Linseed oil | 3.3± 0.41 | 1.57 ± 0.26 | 8.19 ± 0.83 | 33.8± 4.46 | 6.72 ± 1.09 | 74.3 ± 8.92 | 192.8± 12.58 | 121.9 ± 25.74 | 501.2± 25.17 | 187.5 ± 32.59 | 136.5 ± 35.83 | 514.8 ± 65.18 | 196.4 ± 15.95 | 186.4 ± 52.26 | 579.1 ± 31.9 | 129.8 ± 9.21 | 104.9 ± 22.67 | 362.3 ± 18.43 | |
B | Time of heating (h) | 0 | 24 | 48 | 72 | 96 | 120 | ||||||||||||
PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | PV | PAV | TOTOX | ||
Saturated FA: | |||||||||||||||||||
Butter | 100 | 100 | 100 | 132.5 | 124.1 | 131.8 | 167.1 | 195.5 | 169.2 | 123.6 | 208.0 | 129.9 | 106.1 | 278.6 | 118.9 | 125.5 | 432.1 | 148.5 | |
Coconut oil | 100 | 100 | 100 | 85.9 | 133.3 | 88.5 | 95.7 | 143.3 | 98.3 | 80.0 | 153.3 | 83.8 | 66.7 | 227.8 | 75.1 | 74.7 | 292.2 | 86.0 | |
Mono: | |||||||||||||||||||
Olive oil | 100 | 100 | 100 | 253.7 | 115.4 | 197.4 | 865.4 | 140.0 | 570.1 | 1657.1 | 144.9 | 1041.4 | 958.6 | 143.5 | 626.8 | 2395.7 | 383.0 | 1576.3 | |
Canola oil | 100 | 100 | 100 | 224.9 | 623.0 | 247.5 | 772.1 | 3043.7 | 900.3 | 1468.9 | 4733.3 | 1653.4 | 2825.3 | 18,097.7 | 3685.4 | 3282.8 | 20,890.8 | 4274.5 | |
Poly: | |||||||||||||||||||
Soy oil | 100 | 100 | 100 | 572.4 | 1510.8 | 614.3 | 1566.7 | 14,144.6 | 1716.0 | 3677.6 | 19,473.8 | 4382.3 | 3337.4 | 35,932.3 | 4791.5 | 3537.8 | 45,409.2 | 5405.8 | |
Linseed oil | 100 | 100 | 100 | 1024.2 | 428.0 | 907.2 | 5842.4 | 7764.3 | 6119.7 | 5681.8 | 8694.3 | 6285.7 | 5951.5 | 11,872.6 | 7070.8 | 3933.3 | 6681.5 | 4423.7 |
Time of Heating (h) | 0 | 24 | 48 | 72 | 96 | 120 |
---|---|---|---|---|---|---|
Saturated | D (10−9 m2/s) | |||||
Butter | 1 0.161 ± 0.0100 | 0.026 ± 0.0016 | 0.033 ± 0.0012 | 0.029 ± 0.0022 | 0.033 ± 0.0022 | 0.029 ± 0.0008 |
Coconut Oil | 0.037 ± 0.0014 | 0.038 ± 0.0033 | 0.036 ± 0.0005 | 0.036 ± 0.0016 | 0.035 ± 0.0039 | 0.037 ± 0.0029 |
Mono-Unsaturated | D (10−9 m2/s) | |||||
Olive Oil | 0.030 ± 0.0009 | 0.028 ± 0.0024 | 0.025 ± 0.0031 | 0.024 ± 0.0025 | 0.024 ± 0.0014 | 0.026 ± 0.0012 |
Canola Oil | 0.030 ± 0.0033 | 0.027 ± 0.0005 | 0.028 ± 0.0022 | 0.023 ± 0.0012 | 0.019 ± 0.0014 | 0.019 ± 0.0033 |
Poly-Unsaturated | D (10−9 m2/s) | |||||
Soy Oil | 0.034 ± 0.0021 | 0.029 ± 0.0034 | 0.028 ± 0.0033 | 0.022 ± 0.0023 | 0.018 ± 0.0025 | 0.012 ± 0.0008 |
Linseed Oil | 0.040 ± 0.0038 | 0.041 ± 0.0037 | 0.034 ± 0.0040 | 0.030 ± 0.0054 | 0.024 ± 0.0070 | 0.018 ± 0.0069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osheter, T.; Campisi-Pinto, S.; Resende, M.T.; Linder, C.; Wiesman, Z. 1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil’s Food Quality with Respect to Its Oxidation Status. Molecules 2022, 27, 6064. https://doi.org/10.3390/molecules27186064
Osheter T, Campisi-Pinto S, Resende MT, Linder C, Wiesman Z. 1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil’s Food Quality with Respect to Its Oxidation Status. Molecules. 2022; 27(18):6064. https://doi.org/10.3390/molecules27186064
Chicago/Turabian StyleOsheter, Tatiana, Salvatore Campisi-Pinto, Maysa T. Resende, Charles Linder, and Zeev Wiesman. 2022. "1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil’s Food Quality with Respect to Its Oxidation Status" Molecules 27, no. 18: 6064. https://doi.org/10.3390/molecules27186064
APA StyleOsheter, T., Campisi-Pinto, S., Resende, M. T., Linder, C., & Wiesman, Z. (2022). 1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil’s Food Quality with Respect to Its Oxidation Status. Molecules, 27(18), 6064. https://doi.org/10.3390/molecules27186064