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Abstract: Assume that G is a finite group. The power graph P(G) of G is a graph in which G is
its node set, where two different elements are connected by an edge whenever one of them is a
power of the other. A topological index is a number generated from a molecular structure that
indicates important structural properties of the proposed molecule. Indeed, it is a numerical quantity
connected with the chemical composition that is used to correlate chemical structures with various
physical characteristics, chemical reactivity, and biological activity. This information is important for
identifying well-known chemical descriptors based on distance dependence. In this paper, we study
Hosoya properties, such as the Hosoya polynomial and the reciprocal status Hosoya polynomial
of power graphs of various finite cyclic and non-cyclic groups of order pq and pqr, where p, q and
r(p ≥ q ≥ r) are prime numbers.

Keywords: finite groups; molecular structure; power graphs; Hosoya polynomial

1. Introduction

Quantitative structure–property relationships (QSPR) studies are provided by the
physicochemical characteristics and topological indices, such as the atom–bond connec-
tivity index, the geometric–arithmetic index, and the Randić index, which identify the
bioactivity of chemical compounds. In fact, a topological index is created by converting a
chemical structure (i.e., a graph) to a numerical value. It establishes relationships between
various physicochemical properties of molecular structured chemical compounds, includ-
ing the stability, the boiling point, and the strain energy. It is a numerical number that
quantifies a molecular structure’s symmetries, defines its topology, and is constantly under
a structure-preserving function [1]. Several topological indices may be used to explore
specific properties of chemical substances with a microstructure. In 1947, Wiener developed
the concept of the topological index, which he termed the path number while exploring
the boiling point of paraffin [2]. As a consequence, it became known as the Wiener index,
and this was the origin of the concept of topological indices. Numerous degree-based
and distance-based topological indices have been presented and calculated in the past few
years; for instance, see [3–7].

Various scientists utilized Pólya’s [8] concept of evaluating polynomials to determine
the unsaturated hydrocarbon’s molecular orbital. The graph spectra have been widely stud-
ied in this context. Hosoya [9] employed this concept in 1988 to establish the polynomials of
various chemical structures that became referred to as the Hosoya polynomials and garnered
worldwide attention. This polynomial was called the Wiener polynomial by Sagan et al. [10]
in 1996; however, several researchers referred to it as the Hosoya polynomial. The Hosoya
polynomial provides details on graph invariants depending on the distance. In [11], Cash
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proposed a link amongst the Hosoya polynomial and the hyper Wiener index. Estrada
et al. [12] examined several fascinating uses of the extended Wiener indices.

The graphs shown in this article are simple, without loops or multiple edges. Assume
that G is a finite group. The power graph P(G) of G is a graph whose node set is G and
two different elements are joined by an edge whenever one is the power of the other.
Kelarev and Quinn gave the notion of directed power graphs concerning semigroups and
groups [13]. Afterward, in [14], the authors demonstrated the P(S) of a semigroup S and
defined the class of semigroups whose power graphs are complete. Additionally, they
explained when the power graph of a group G is complete whenever the group G is cyclic
of order prime power or one.

The power graph is a popular topic in various mathematics disciplines, including Lie
algebra, ring theory, and group theory. The authors of [15] examined matching numbers
and established upper and lower limits on the perfect matching of power graphs associated
with specific groups. Furthermore, they demonstrated how to generate matching numbers
for each finite nilpotent group. The authors of [16] focused on power indices graphs while
categorizing all graphs into a few predefined groups. In [17], the authors investigated the
greatest clique and discovered that power graphs have the maximum number of edges for
every finite cyclic group. The node connectivity of P(Zn), where n is the product of certain
prime numbers, was studied in [18]. Additionally, several other scholars investigated other
algebraic graph notions; for example, see [19–27].

Matching is the set of edges that do not intersect with any nodes. A node is said to
be matched if it coincides with one of the matching edges. Alternatively, an unmatched
node is present. The Hosoya index or Z-index indicates a graph’s greatest number of
matchings. Hosoya [28] invented the Z-index in 1971 and later developed it to serve as a
general mechanism for quantum chemistry [29]. It has now been proven to be extremely
effective in various chemical issues, particularly the boiling point, entropy, and the heat of
vaporization. Several researchers studied the extremal issues using the Hosoya index to
use a variety of graph configurations. In [30–35], the excessive topological and Hosoya
properties of various graphs, such as unicyclic graphs, Eulerian graphs, and trees were
widely examined.

The Hosoya properties of general graphs are difficult to study, and providing exact
formulae is very challenging. So, the authors restrict these properties to some classes
of graphs and elaborate on various interesting properties, although gaps remain. Re-
searchers [3,36–39] studied the topological indices such as the Hosoya polynomial of
graphs defined on groups, such as fractal graphs, power graphs of finite groups, commut-
ing, and non-commuting graphs of the group of symmetries. Calculating the (reciprocal)
Hosoya polynomial of a power graph P(G) of an arbitrary group G is very complicated.
Therefore, we have extended their work by finding the Hosoya as well as the reciprocal
status Hosoya polynomials of power graphs of several finite groups of a different order.

The remaining article is organized as follows: Section 2 contains some relevant results
and definitions useful for this paper. In Section 3, we explore the power graphs of finite
cyclic as well as non-cyclic groups of order pq and pqr, whereas p, q and r (p ≥ q ≥ r) are
different primes. Section 4 analyzes the reciprocal status Hosoya polynomial of power
graphs of finite groups of order pq and pqr. Section 5 contains the conclusion of the paper.

2. Basic Notions and Notations

This section summarizes various basic graph–theoretic features and notable results
that will be discussed later in the paper.

Assume that Γ is an undirected finite simple graph. The edge and node sets of Γ
are indicated by E(Γ) and V(Γ), respectively. The distance from u1 to u2 in Γ symbolized
by dis(u1, u2) is based on the length of the smallest path between them. The order of Γ
is determined as the number of nodes, which is indicated by |Γ|. Two distinct nodes v1
and v2 are connected if they share an edge, and it is represented by v1 ∼ v2; otherwise,
v1 � v2. The degree or valency of a node u1 is deg(u1), which represents the set of nodes
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in Γ that are edge connected to u1. A u1 − u2 path having dis(u1, u2) length is known as a
u1 − u2 geodesic. The greatest distance between u1 and other nodes in Γ is referred to as the
eccentricity and is indicated by the symbol ec(u1). The diameter denoted by diam(Γ) of Γ
is the greatest eccentricity amongst all the nodes of Γ. Additionally, the radius denoted by
rad(Γ) is the least eccentricity of all the nodes in Γ.

Assume that Γ is a connected graph of degree n. Hosoya defines the polynomial of Γ
as given below:

H(Γ, y) = ∑
i≥0

dis(Γ, i)yi. (1)

The coefficient dis(Γ, i) denotes the total of (v, w) pairs of nodes such that dis(v, w) = i,
where i ≤ diam(Γ). In [40], the authors presented the following reciprocal status Hosoya
polynomial for Γ:

Hrs(Γ, y) = ∑
vw∈E(Γ)

yrs(v)+rs(w), (2)

where rs(w) = ∑v∈V(Γ),v 6=w
1

dis(w,v) is called the reciprocal status or the reciprocal transmis-
sion of w.

Assume that Γ1 and Γ2 are two graphs that are connected; then, Γ1 ∨ Γ2 is the join of
Γ1 and Γ2 where the node and edge sets are V(Γ1) ∪V(Γ2) and

E(Γ1) ∪ E(Γ2) ∪ {y ∼ z : y ∈ V(Γ1), z ∈ V(Γ2)},

respectively. An edge connecting any two nodes in a graph is known as a complete graph,
and it is represented by Kn. Additional undefined terms and notations were obtained
from [41,42].

We denote the cyclic group of order n by Zn. In addition, the direct product of groups
G1,G2, . . . ,Gn having binary operations ?1, ?2, . . . , ?n, respectively, is the collection of all
ordered n-tuples (x1, x2, . . . , xn) component-wise operation defined by

(x1, x2, . . . , xn) ? (x′1, x′2, . . . , x′n) = (x1 ?1 x′1, x2 ?2 x′2, . . . , xn ?n x′n),

where xi ?i x′i is the product in Gi for each i. Similarly, for the definition of semidirect
product of groups, see ([43], p. 177).

3. Hosoya Polynomials

The following result gives the structure of power graphs of finite groups of order pq.

Lemma 1 ([44]). Assume that G is a finite group and |G| = pq, whereas p and q (p < q) are
primes. Then, the subsequent properties hold.

(i) P(G) ∼= Kpq−p−q+2 ∨
(
Kp−1 ∪ Kq−1

)
if and only if G is cyclic.

(ii) P(G) ∼= K1 ∨
(

Kp−1 ∪ Kp−1 ∪ · · · ∪ Kp−1︸ ︷︷ ︸
q

∪Kq−1
)

if and only if G is non-cyclic.

Next, the following result provides the Hosoya polynomial of power graphs of a finite
group G of order pq.

Theorem 1. Suppose G is a finite group and |G| = pq, (p < q). Then, the subsequent holds.

(i) If G is cyclic of order n = pq, then

H(P(G), y) = (pq− p− q + 1)y2 +
1
2

(
(pq)2 − 3pq + 2p + 2q− 2

)
y + pq.

(ii) If G is non-cyclic of order n = pq, then

H(P(G), y) =
q
2
(p− 1)(p + 1)(q− 1)y2 +

q
2

(
p2 + q− p− 1

)
y + pq.
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Proof. By the definition of Hosoya coefficients given in Equation (1), we need to determine
dis(P(G), 0), dis(P(G), 1), and dis(P(G), 2). Consider now a node set Vk that contains any
pair of P(G) nodes; then,

|Vk| =
(

pq
2

)
+ pq =

pq(pq + 1)
2

.

Suppose

C(P(G), `) =
{
(j, k); j, k ∈ V(P(G)) | dis(j, k) = `

}
,

and dis(P(G), `) = |C(P(G), `)|. Then:

Vk = C(P(G), 0) ∪ C(P(G), 1) ∪ C(P(G), 2). (3)

Since, for each j ∈ V(P(G)), dis(j, j) = 0, so

C(P(G), 0) =
{
(j, j); j ∈ V(P(G))

}
,

and is equal to V(P(G)). Therefore, C(P(G), 0) = n. Applying (i) of Lemma 1, we have
P(G) ∼= Kpq−p−q+2 ∨

(
Kp−1 ∪ Kq−1

)
with V(Kpq−p−q+2) = A1, V(Kp−1) = A2, and

V(Kq−1) = A3. Therefore,

C(P(G), 1) ={(j, k); j ∈ A1, k ∈ A2} ∪ {(j, k); j ∈ A1, k ∈ A3}
∪ {(j, k); k, j ∈ A1 and k 6= j} ∪ {(j, k); k, j ∈ A2 and k 6= j}
∪ {(j, k); k, j ∈ A3 and k 6= j}.

Consequently,

C(P(G), 1) =(2 + pq− q− p)(p− 1) + (2 + pq− q− p)(q− 1) +
(

2 + pq− q− p
2

)
+

(
p− 1

2

)
+

(
q− 1

2

)
=

1
2

(
(pq)2 − 3pq + 2p + 2q− 2

)
.

Using Equation (3), we obtain:

|Vk| = dis(P(G), 0) + dis(P(G), 1) + dis(P(G), 2).

Hence,

dis(P(G), 2) = |Vk| − dis(P(G), 0)− dis(P(G), 1)

=
pq(pq + 1)

2
− pq− 1

2

(
(pq)2 − 3pq + 2p + 2q− 2

)
= pq− q− p + 1.

Now, by Equation (1) and using the above calculation, we obtain

H(P(G), y) = (pq− p− q + 1)y2 +
1
2

(
(pq)2 − 3pq + 2p + 2q− 2

)
y + pq.
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(ii) Using Lemma 1, the power graph of G isP(G) ∼= K1 ∨
(

Kp−1 ∪ Kp−1 ∪ · · · ∪ Kp−1︸ ︷︷ ︸
q

∪Kq−1
)
.

Let V(Kq−1) = A1, V(Kp−1) = A2 and retaining other notation as given in (i), we obtain:

C(P(G), 1) =
{
(j, k); k ∈ A1, j = e

}
∪

q⋃
j=1

{
(j, k); k ∈ A2, j = e

}

∪
{
(j, k); k ∈ A1, j = e and k 6= j

}
∪

q⋃
j=1

{
(j, k); k ∈ A2, j = e and k 6= j

}
.

Thereby, it follows that

C(P(G), 1) = q− 1 + q(p− 1) +
(

q− 1
2

)
+ q
(

p− 1
2

)
=

q
2

(
p2 + q− p− 1

)
.

Using Equation (3), we obtain

dis(P(G), 2) = |Vk| − dis(P(G), 0)− dis(P(G), 1)

=
pq(pq + 1)

2
− pq− q

2

(
p2 + q− p− 1

)
=

q
2
(q− 1)(p + 1)(p− 1).

Thus, the Hosoya polynomial of P(G) is given below:

H(P(G), y) =
q
2
(p− 1)(p + 1)(q− 1)y2 +

q
2
(p2 + q− p− 1)y + pq.

We denote G(p, q, r) as the class of all finite groups whose order is pqr, whereas p, q, r
are primes. Hölder [45] (see, also [46]) investigated the structures of groups in G(p, q, r).
For p = q = r, there are five groups of order p3 that are given as:

Zp ×Zp2 , Zp ×Zp ×Zp, Zp oZp2 , Zp o
(
Zp ×Zp

)
,Zp3 ,

where o is the semidirect product and × is the direct product of groups. For p > q > r, the
groups of order pqr are given below:

• Zpqr, Fp,qr, (qr|p− 1), Zp × Fq,r, (r|q− 1), Zr × Fp,q, (q|p− 1), Zq × Fp,r, (r|p− 1),

• Gi+5
∼= 〈α, β, γ : αp = βq = γr = 1, αβ = βγ, γ−1βγ = βu, γ−1αγ = αvi 〉, where

q− 1, r|p− 1, o(u) = r in Z∗q and o(v) = r in Z∗p (1 ≤ i ≤ r− 1).

Suppose for r = 3, we have following groups of order 3pq, for Gi+5.
G6 = 〈α, β, γ : αp = βq = γ3 = 1, αβ = βα, γ−1βγ = βu, γ−1αγ = αv〉, where o(u) = 3 in
Z∗q and o(v) = 3 in Z∗p.

G7 = 〈α, β, γ : αp = βq = γ3 = 1, αβ = βα, γ−1βγ = βu, γ−1αγ = αv2〉, where o(u) = 3 in
Z∗q and o(v) = 3 in Z∗p.

Based on these finite groups of order pqr, we find the Hosoya polynomials of their
power graphs.

Theorem 2. The Hosoya polynomial of P(G) of the group G = Zp ×Zp2 is given as:

H(P(G), y) =
p
2
(p3 + p2 + 3p + 1)(p− 1)2y2 +

p
2
(p− 1)(p3 − p2 + 2p + 1)y + p3.
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Proof. First, we find the Hosoya coefficients, dis(P(G), 0), dis(P(G), 1), and dis(P(G), 2)
of P(G). The node set Vk for any pair of nodes of P(G) is given below:

|Vk| =
(

p3

2

)
+ p3 =

p3(p3 + 1)
2

.

Clearly, C(P(G), 0) = pqr. In addition, the structure of P(G) ( see [47]) is given as:

P(G) ∼= K1 ∨
((

Kp−1 ∪ · · · ∪ Kp−1︸ ︷︷ ︸
p−times

)⋃ (
Kp−1 ∨

(
Kp2−p ∪ Kp2−p ∪ · · · ∪ Kp2−p︸ ︷︷ ︸

p−times

)))
.

Suppose V(Kp−1) = A1, V(Kp2−p) = A2, and denote one of the remaining p copies
of nodes of V(Kp−1) by A3. Thus:

C(P(G), 1) =
{
{(j, k); k ∈ A1, j = e} ∪ {(j, k); k ∈ A2, j = e} ∪ {(j, k); k ∈ A3, j = e}

∪ {(j, k); k, j ∈ A1 and k 6= j} ∪
( p⋃

j=1
{(j, k); k, j ∈ A2 and k 6= j}

)

∪
( p⋃

j=1
{(j, k); k, j ∈ A3 and k 6= j}

)}
.

Consequently,

C(P(G), 1) = p− 1 + p(p2 − p) + p(p− 1) +
(

p− 1
2

)
+ p

(
p2 − p

2

)
+ p

(
p− 1

2

)
=

p
2
(p− 1)(p3 − p2 + 2p + 1).

Therefore, from

|Vk| = dis(P(G), 0) + dis(P(G), 1) + dis(P(G), 2),

we obtain

dis(P(G), 2) = |Vk| − dis(P(G), 0)− dis(P(G), 1)

=
p3(1 + p3)

2
− p3 − p

2
(p− 1)(p3 − p2 + 2p + 1)

=
p
2
(p3 + p2 + 3p + 1)(p− 1)2.

By using the above values in Equation (1), we obtain

H(P(G), y) =
p
2
(p3 + p2 + 3p + 1)(p− 1)2y2 +

p
2
(p3 − p2 + 2p + 1)y + p3(p− 1).

Proceeding in the same manner as in Theorem 2 and noticing that (see [47]) P(Zp ×

Zp × Zp) = K1 ∨
( p2+p+1⋃

i=1

Kp−1

)
, we have the following result for the power graph of

Zp ×Zp ×Zp.
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Theorem 3. The Hosoya polynomial of P(G) of G = Zp ×Zp ×Zp is given as:

H(P(G), y) =
p
2
(p + 1)(p− 1)2(1 + p + p2)y2 +

p
2
(p− 1)(p2 + p + 1)y + p3.

Let G ∼= 〈x, y : xp2
= yp = 1, y−1xy = xp+1〉. Then, for p 6= 2,

P(G) ∼= P(Zp oZp2) ∼= P(Zp ×Zp2)

(see [47] Theorem 3.5), and its Hosoya polynomial is given in Theorem 2. For p = 2,
P(G) ∼= P(Z2 oZ22) = K1 ∨ (K3 ∪ K4), then its Hosoya polynomial is

18y2 + 10y + 8. (4)

Suppose G ∼= 〈a, b, c : ap = bp = cp = 1, ac = cab, bc = cb, ab = ba〉. Then, for p = 2,

P(G) ∼= P(Zp ×Zp ×Zp) ∼= P(Zp o (Zp ×Zp)),

and Theorem 3 specifies its Hosoya polynomial. For p = 2,

P(G) ∼= P(Z2 o (Z2 ×Z2)) ∼= P(Z2 oZ4),

and its Hosoya polynomial is given as in Equation (4).

Theorem 4. The Hosoya polynomial of P(Zpqr) of Zpqr, where p, q, r are distinct primes is given
as:

H(P(Zpqr), y) =(3− 3p + p2 − 3q + 3pq− p2q + q2 − pq2 − 3r + 3pr− p2r + 3qr− 3pqr

+ p2qr− q2r + pq2r + r2 − pr2 − qr2 + pqr2)y2 +
1
2
(

p2q2r2 − 2p2qr + 2p2q

+ 2p2r− 2p2 − 2pq2r + 2pq2 − 2pqr2 + 5pqr− 6pq + 2pr2 − 6pr + 6p

+ 2q2r− 2q2 + 2qr2 − 6qr + 6q− 2r2 + 6r− 6
)
y + pqr.

Proof. Since the node set Vk for any pair of nodes of P(Zpqr) is:

|Vk| =
(

pqr
2

)
+ pqr =

pqr(pqr + 1)
2

.

Clearly, C(P(Zpqr), 0) = pqr. The structure of P(Zpqr) ([47]) is:

P(Zpqr) ∼= K(p−1)(q−1)(r−1)+1 ∨ C6[Kq−1, Kqr−p−r+1, Kr−1, Kpr−p−r+1, Kp−1, Kpq−p−q+1],

where C6 is the cycle of order 6. Using node partitions of P(Zpqr) as:

V(K(p−1)(q−1)(r−1)+1) = A1, V(Kq−1) = A2, V(Kqr−q−r+1) = A3, V(Kr−1) = A4,

V(Kpr−p−r+1) = A5, V(Kp−1) = A6 and V(Kpq−p−q+1) = A7.

Thus:
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C(P(Zpqr), 1) =
{
(j, k); k, j ∈ A1 and j 6= k

}
∪ {(j, k); j ∈ A1, k ∈ A2} ∪ {(j, k); j ∈ A1, k ∈ A3}

∪ {(j, k); j ∈ A1, k ∈ A4} ∪ {(j, k); j ∈ A1, k ∈ A5} ∪ {(j, k); j ∈ A1, k ∈ A6}
∪ {(j, k); j ∈ A1, k ∈ A7} ∪

{
(j, k); j, k ∈ A2 and j 6= k

}
∪
{
(j, k); j, k ∈ A3 and j 6= k

}
∪
{
(j, k); j, k ∈ A4 and j 6= k

}
∪
{
(j, k); j, k ∈ A5 and j 6= k

}
∪
{
(j, k); j, k ∈ A6 and j 6= k

}
∪
{
(j, k); j, k ∈ A7 and j 6= k

}
∪ {(j, k); j ∈ A2, k ∈ A3} ∪ {(j, k); j ∈ A3, k ∈ A4}

∪ {(j, k); j ∈ A4, k ∈ A5} ∪ {(j, k); j ∈ A5, k ∈ A6} ∪ {(j, k); j ∈ A6, k ∈ A7}
∪ {(j, k); j ∈ A7, k ∈ A2}.

Therefore,

C(P(Zpqr), 1) =
(

1 + (p− 1)(q− 1)(r− 1)
2

)
+
(

1 + (p− 1)(q− 1)(r− 1)
)(

q− 1 + qr− r

− q + 1 + r− 1 + pr− p− r + 1 + p− 1 + pq− p− q + 1
)
+

(
q− 1

2

)
+

(
r− 1

2

)
+

(
qr− q− r + 1

2

)
+

(
pr− p− r + 1

2

)
+

(
p− 1

2

)
+

(
pq− p− q + 1

2

)
+ (q + r− 2)(1 + rq− r− q)

+ (1 + rp− r− p + 1)(p + r− 2) + (1 + qp− p− q)(p + q− 2).

=
1
2

(
p2q2r2 − 2p2qr + 2p2q + 2p2r− 2p2 − 2pq2r + 2pq2 − 2pqr2 + 5pqr

− 6pq + 2pr2 − 6pr + 6p + 2q2r− 2q2 + 2qr2 − 6qr + 6q− 2r2 + 6r− 6
)

.

In addition,

dis
(
P(Zpqr), 2

)
= |Vk| − dis

(
P(Zpqr), 0

)
− dis

(
P(Zpqr), 1

)
=

pqr(pqr + 1)
2

− pqr− 1
2

(
p2q2r2 − 2p2qr + 2p2q + 2p2r− 2p2 − 2pq2r

+ 2pq2 − 2pqr2 + 5pqr− 6pq + 2pr2 − 6pr + 6p + 2q2r− 2q2 + 2qr2 − 6qr

+ 6q− 2r2 + 6r− 6
)

.

= 3− 3p + p2 − 3q + 3pq− p2q + q2 − pq2 − 3r + 3pr− p2r + 3qr− 3pqr

+ p2qr− q2r + pq2r + r2 − pr2 − qr2 + pqr2.

By inserting the aforementioned values into Equation (1), we obtain the essential Hosoya
polynomial.

Next, we find the Hosoya polynomial of P(Zr × Fp,q), (p ∼= 1(mod q)). Similarly, the
Hosoya polynomials of P(Zp × Fq,r), (q ∼= 1(mod r)) and P(Zq × Fp,r), (p ∼= 1(mod r))
can be obtained. The power graph of P(Zr × Fp,q), (p ∼= 1(mod q)) (see [47], Theorem 3.10)
as a joined union is shown in Figure 1, where Kqr−q−r+1 and Kq−1 both occur p-times.
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K1
Kp−1

Kpr−p−r+1

Kr−1

Kqr−q−r+1

Kqr−q−r+1 · · · Kqr−q−r+1

Kq−1
Kq−1

· · ·

Kq−1

Figure 1. P(Zr × Fp,q), (p ∼= 1(mod q)).

Theorem 5. The Hosoya polynomial of P(G) of the group G = Zr × Fp,q is given as:

H(P(G), y) =
p
2

(
pq2r2 − pr2 − q2r2 + 2qr− 2q + r2

)
y2 +

p
2

(
pr2 + q2r2 − 3qr + 2q− r2

)
y

+ pqr.

Proof. From Figure 1, consider the node partitions of P(G) as:
V(K1) = {e}, V(Kr−1) = A1, V(Kpr−p−r+1) = A2, V(Kr−1) = A3, V(Kqr−q−r+1) =

A4, and V(Kq−1) = A5. Thus:

C(P(G), 1) =
{
(j, k); j = e, k ∈ A1

}
∪ {(j, k); j = e, k ∈ A2} ∪ {(j, k); j = e, k ∈ A3}

∪
( p⋃

j=1
{(j, k); j = e, k ∈ A4}

)
∪
( p⋃

j=1
{(j, k); j = e, k ∈ A5}

)
∪ {(j, k); k, j ∈ A1, and k 6= j} ∪ {(j, k); k, j ∈ A2, and k 6= j}
∪
{
(j, k); k, j ∈ A3 and k 6= j

}
∪
{
(j, k); k, j ∈ A3 and k 6= j

}
∪
( p⋃

j=1

{
(j, k); k, j ∈ A4 and k 6= j

})
∪
( p⋃

j=1

{
(j, k); k, j ∈ A5 and k 6= j

})

∪
( p⋃

j=1

{
(j, k); j ∈ A3, k ∈ A4

})
∪
( p⋃

j=1

{
(j, k); k, j ∈ A4, k ∈ A5

})
.

From the above computation, we obtain:

C(P(G), 1) =p− 1 + rp− p− r + 1 + r− 1 + p(1 + rq− r− q) + p(q− 1) +
(

p− 1
2

)
+

(
pr− r− p + 1

2

)
+

(
r− 1

2

)
+ (rp− p− r + 1)(p + r− 2) + p

(
q− 1

2

)
+ p

(
qr− q− r + 1

2

)
+

(
qp− q− p + 1

2

)
+ (rq− q− r + 1)(rp + qp− 2p)

=
1
2

p
(

pr2 + q2r2 − 3qr + 2q− r2
)

.
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In addition,

dis(P(G), 2) = |Vk| − dis(P(G), 0)− dis(P(G), 1)

=
pqr(pqr + 1)

2
− pqr− 1

2
p
(

pr2 + q2r2 − 3qr + 2q− r2
)

=
1
2

p
(

pq2r2 − pr2 − q2r2 + 2qr− 2q + r2
)

.

Therefore, the Hosoya polynomial of P(G) is given as follows:

H(P(G), y) =
p
2

(
pq2r2 − pr2 − q2r2 + 2qr− 2q + r2

)
y2 +

p
2

(
pr2 + q2r2 − 3qr + 2q− r2

)
y + pqr.

Now, we examine the Hosoya polynomial of the power graph of Fp,qr
(

p ∼= 1(mod qr)
)
.

The structure of P(Fp,qr) is given in [47] (see Theorem 3.12). The following results can be
proved in the same manner as Theorems 2 and 5.

Theorem 6. Suppose G ∼= Fp,qr
(

p ∼= 1(mod qr)
)

is the group of order pqr. Then, the following
characteristics hold true.

(i) For r = 3 or q = 3, the Hosoya polynomial of P(G) is given below:

H(P(G), y) =
1
2
(p− 1)

(
pq2r2 − pr2 + 2r− 2

)
y2 +

1
2
(p2r2 + pq2r2 − pqr− pr2 − 2pr

+ 2p + 2r− 2)y + pqr.

(ii) When r, q 6= 3, then the Hosoya polynomial of P(G) is given below:

H(P(G), y) =
1
2

p(qr− 1)(qr + 1)(p− 1)y2 +
1
2

p
(

p + q2r2 − qr− 1
)

y + pqr.

The following result calculates the Hosoya polynomial of the power graph of Gi+5,
and its proof is similar to the proof of the above results.

Theorem 7. The following is the Hosoya polynomial of P(Gi+5):

H(P(Gi+5), y) =
1
2

(
p2q2r2 − p2q2 − pqr2 + 3pq− 2p− 2q + 2

)
y2 +

1
2
(p2q2 + pqr2 − pqr

− 3pq + 2p + 2q− 2)y + pqr.

4. Reciprocal Status Hosoya Polynomials

The reciprocal status Hosoya polynomials of power graphs of finite groups pq and
pqr will be determined in this section.

The first result establishes the reciprocal status Hosoya polynomials on the power
graphs of cyclic and non-cyclic groups whose orders are the product of two different
primes.

Theorem 8. Suppose G is a finite group of order qp, (q > p). Then, the following characteristics
hold true.

(i) If G is cyclic and |G| = pq, then

Hrs(P(G), y) = (2 + qp− q− p)(q− 1)y
4pq−q−3

2 + (q− 1)(2 + qp− q− p)y
4pq−p−3

2

+
(1 + qp− q− p)(2 + qp− q− p)

2
y2(pq−1) +

(p− 2)(p− 1)
2

y2pq−q−1

+
(p− 1)(p− 2)

2
y2pq−p−1.
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(ii) If G is non-cyclic and |G| = pq, then

Hrs(P(G), y) = (q− 1)y
3pq+q−4

2 + q(p− 1)y
4pq−3q−1

2 +
(q− 2)(q− 1)

2
ypq+q−2

+
q(p− 2)(p− 1)

2
y2pq−3q+1.

Proof. Using Lemma 1, the power graph of the cyclic group G is given below:

P(G) ∼= Kpq−p−q+2 ∨
(
Kp−1 ∪ Kq−1

)
,

with node partition sets V(Kpq−p−q+2) = A1, V(Kp−1) = A2 and V(Kq−1) = A3. So, when
v ∈ A1, then ec(v) = 1; also, we use the reciprocal status idea, resulting in the following:

rs(v) = pq− 1.

When v ∈ A2, then ec(v) = 2. Additionally, we use the reciprocal status idea, resulting
in the following:

rs(v) = p− 2 + qp− q− p + 2 +
q− 1

2
=

2pq− q− 1
2

.

When v ∈ A3, implying ec(v) = 2, further, we use the idea of reciprocal status,
resulting in the following:

rs(v) = q− 2 + pq− p− q + 2 +
p− 1

2
=

2pq− p− 1
2

.

Clearly, from the structure of P(G), there are five distinct kinds of edges in P(G),
namely: u ∼ v, u ∼ w, u ∼ u, v ∼ v and w ∼ w, where we take u = pq− 1, v = 2pq−q−1

2
and w = 2pq−p−1

2 . Thus, using the reciprocal status Hosoya polynomial, we obtain:

Hrs(P(G), y) = ∑
Eu∼v

yu+v + ∑
Eu∼w

yu+w + ∑
Eu∼u

y2u + ∑
Ev∼v

y2v + ∑
Ew∼w

y2w. (5)

In addition, the edge set of type u ∼ v is, Eu∼v = {ab ∈ E(P(G)) : rs(a) = u, rs(b) = v}
and the order of Eu∼v is |Eu∼v| = (pq − p − q + 2)(q − 1). Similarly, |Eu∼u| =
(2+qp−q−p)(1+qp−q−p)

2 , |Eu∼w| = (2+ qp− q− p)(q− 1), |Ev∼v| = (p−2)(p−1)
2 , and |Ew∼w| =

(p−2)(p−1)
2 . Substituting all these values in Equation (5), we obtain:

Hrs(P(G), y) = (q− 1)(2 + pq− q− p)y
4pq−q−3

2 + (pq− p− q + 2)(q− 1)y
4pq−p−3

2

+
(1 + qp− q− p)(2 + qp− q− p)

2
y2(pq−1) +

(p− 2)(p− 1)
2

y2pq−q−1

+
(p− 1)(p− 2)

2
y2pq−p−1.

(ii) By Lemma 1, P(G) ∼= K1 ∨
(

Kp−1 ∪ · · · ∪ Kp−1︸ ︷︷ ︸
q

∪Kq−1
)
, with V(K1) = {e}, V(Kp−1) =

A2 and V(Kq−1) = A3.
So, when v ∈ V(K1), then ec(v) = 1, and proceeding as in (i), we have:

rs(v) = pq− 1.

When v ∈ A2, then ec(v) = 2, and using the idea of reciprocal status, resulting in the
following:

rs(v) = q− 2 + 1 +
q(p− 1)

2
=

pq + q− 2
2

.
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When v ∈ A3, implying ec(v) = 2. Additionally, we incorporate the notion of recipro-
cal status, which results in the following:

rs(v) = q(p− 2) + 1 +
q− 1

2
=

2pq− 3q + 1
2

.

Furthermore, from the structure of P(G), we see that there are four distinct kinds of
edges, namely: u ∼ w, v ∼ v, u ∼ v, and w ∼ w, where we let u = pq− 1, v = pq+q−2

2 and
w = 2pq−3q+1

2 . Therefore, by Equation (2), we have

Hrs(P(G), y) = ∑
Eu∼v

yu+v + ∑
Eu∼w

yu+w + ∑
Ev∼v

y2v + ∑
Ew∼w

y2w. (6)

In addition, the cardinality of the corresponding edge sets is |Eu∼v| = q− 1, |Eu∼w| = q(p−
1), |Ev∼v| = (q−1)(q−2)

2 , and |Ew∼w| = q(p−1)(p−2)
2 . Putting these values in Equation (5), we

obtain:

Hrs(P(G), y) = (q− 1)y
3pq+q−4

2 + q(p− 1)y
4pq−3q−1

2 +
(q− 2)(q− 1)

2
ypq+q−2

+
q(p− 2)(p− 1)

2
y2pq−3q+1.

Next, we calculate the reciprocal status Hosoya polynomials of all those groups whose
order is p3.

Theorem 9. Assume that P(G) is the power graph of G = Zp ×Zp2 order p3. Then

Hrs(P(G), y) =(p− 1)y
4p3−p2+p−4

2 + p(p2 − p)y
4p3+p2−4

2 + p(p− 1)y
2p3+p2+p−4

2

+

(
p− 1

2

)
yp3+p2−2 + p(p− 1)(p2 − p)y

3p3+p−4
2 + p

(
p2 − p

2

)
yp3+p2−2

+ p
(

p− 1
2

)
yp2+p−2.

Proof. Using the node partitions of P(G) as given in Theorem 2 and V(K1) = {e}, we
have: For v = e, then ec(v) = 1. Additionally, we use the idea of reciprocal status, resulting
in the following:

rs(v) = p(p− 1) + p− 1 + p(p2 − p) = p3 − 1.

For v ∈ A1, ec(v) = 2. Additionally, we incorporate the notion of reciprocal status,
which results in the following:

rs(v) =
p(p− 1)

2
+ (p− 1) + p(p2 − p) =

2p3 − p2 + p− 2
2

.

When v ∈ A2, then ec(v) = 2. Furthermore, we incorporate the notion of reciprocal
status, which results in the following:

rs(v) = p2 − p− 1 + 1 + p− 1 +
1
2

(
p(p− 1) + (p2 − p)(p− 1)

)
=

p3 + p2 − 2
2

.

When v ∈ A3, then ec(v) = 2. Furthermore, using the idea of reciprocal status results
in the following:

rs(v) = (p− 1) +
1
2

(
(p− 1)2 + p(p2 − p) + p− 1

)
=

p3 + p− 2
2

.
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From the structure of P(G), we see that there are six kinds of edges in P(G), namely:
u ∼ v, u ∼ w, u ∼ x, v ∼ v, v ∼ w, w ∼ w and x ∼ x, where we take u = p3 − 1,

v = 2p3−p2+p−2
2 , w = p3+p2−2

2 , and x = p2+p−2
2 . Therefore,

Hrs(P(G), y) = ∑
Eu∼v

yu+v + ∑
Eu∼w

yu+w + ∑
Eu∼u

y2u + ∑
Ev∼v

y2v + ∑
Ew∼w

y2w. (7)

In addition, the edge set of type u ∼ v is Eu∼v = {ab ∈ E(P(G)) : rs(a) = u, rs(b) =
v} and the order of Eu∼v is |Eu∼v| = p− 1. Similarly, |Eu∼w| = p(p2− p), |Eu∼x| = p(p− 1),

|Ev∼v| = (p−1
2 ), |Ev∼w| = p(p − 1)(p2 − p), |Ew∼w| = p(p2−p

2 ), and |Ex∼x| = p(p−1
2 ).

Substituting all these values in Equation (7), we have:

Hrs(P(G), y) =(p− 1)y
4p3−p2+p−4

2 + p(p2 − p)y
4p3+p2−4

2 + p(p− 1)y
2p3+p2+p−4

2

+

(
p− 1

2

)
yp3+p2−2 + p(p− 1)(p2 − p)y

3p3+p−4
2 + p

(
p2 − p

2

)
yp3+p2−2

+ p
(

p− 1
2

)
yp2+p−2.

We obtain the following result by performing the processes described in Theorem 9.

Theorem 10. Consider P(G) is the power graph of G = Zp ×Zp ×Zp of order p3. Then

Hrs(P(G), y) = (p3 − 1)y
3p3+p−4

2 + (p2 + p + 1)
(

p− 1
2

)
yp3+p−2.

Let G ∼= 〈x, y : xp2
= yp = 1, y−1xy = xp+1〉. Then, for p 6= 2, P(G) ∼= P(Zp oZp2) ∼=

P(Zp ×Zp2) and its reciprocal status Hosoya polynomial is given in Theorem 9. For p = 2,
P(G) ∼= P(Z2 oZ22) = K1 ∨ (K3 ∪ K4), then its Hosoya polynomial is

4y11 + 3y10 + 3y9. (8)

Suppose G ∼= 〈a, b, c : ap = bp = cp = 1, ac = cab, bc = cb, ab = ba〉. Then, for
p 6= 2, P(G) ∼= P(Zp × Zp × Zp) ∼= P(Zp o (Zp × Zp)) and its reciprocal status Hosoya
polynomial is devoted in Theorem 10. When p = 2, then P(G) ∼= P(Z2 o (Z2 × Z2)) ∼=
P(Z2 oZ4), and its reciprocal status is given by Equation (8).

The following result gives the power graph’s reciprocal status Hosoya polynomials of
the cyclic group Zpqr.

Theorem 11. Assume that P(Zpqr) is the power graph of Zpqr of order pqr. Then

Hrs(P(Zpqr), y) =
(

1 + pr− r− p
2

)
y2u1 + (q− 1)((p− 1)(q− 1)(r− 1) + 1)yu1+u2

+ (1 + rq− r− q)(1 + (p− 1)(q− 1)(r− 1))yu1+u3 + (r− 1)((p− 1)(q− 1)

(r− 1) + 1)yu1+u4 + (1 + pr− r− p)((q− 1)(p− 1)(r− 1) + 1)yu1+u5

+ (p− 1)(1 + (r− 1)(q− 1)(p− 1))yu1+u6 + (p− 1)(1 + (r− 1)(q− 1)(p− 1))yu1+u7

+

(
q− 1

2

)
y2u2 + (q− 1)(qr− q− r + 1)yu2+u3 + (q− 1)(pq− p− q + 1)yu2+u7

+

(
1 + rq− r− q

2

)
y2u3 + (r− 1)(1 + rq− r− q)yu3+u4 +

(
r− 1

2

)
y2u4

+ (r− 1)(rp− p− r + 1)yu4+u5 +

(
1 + pr− r− p

2

)
y2u5 + (p− 1)(1 + pr− r− p)yu5+u6

+

(
p− 1

2

)
y2u6 + (p− 1)(1 + pq− q− p)yu6+u7 +

(
1 + pq− q− p

2

)
y2u7 ,
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where u1 = pqr − 1, u2 = 2pqr−pr−1
2 , u3 = 2pqr−pr−pq+p+q+r+1

2 , u4 = 2pqr−pq−1
2 , u5 =

1
2 (2pqr− pq− qr + p + q + r− 3), u6 = 2pqr−qr−1

2 and u7 = 2pqr−pr−qr+p+q+r−3
2 .

Proof. Using the node partitions of P(Zpqr) as presented in Theorem 4, we obtain the
following:

When, u1 ∈ A1, implying ec(u1) = 1, also, we use the reciprocal status concept, which
results in the following:

rs(u1) = pqr− 1.

When, u2 ∈ A2, then ec(u2) = 2. Furthermore, we incorporate the concept of reciprocal
status, which results in the following:

rs(u2) =q− 2 + qrp− qp− rq− rp + q + p + r− 1 + 1 + rq− q− r + 1 + qp− q− p + 1

+
1
2

(
p− 1 + pr− p− r + 1 + r− 1

)
=

2pqr− pr− 1
2

.

When u3 ∈ A3, then ec(u3) = 2; also, we use the reciprocal status concept, which
results in the following:

rs(u3) =qr− q− r + q− 1 + r− 1 + qrp− rq− rp− qp + r + q + p

+
1
2

(
pr− p− r + 1 + p− 1 + pq− p− q + 1

)
=

2pqr− pr− pq + p + q + r + 1
2

.

When u4 ∈ A4, it implies ec(u4) = 2. Furthermore, we incorporate the concept of
reciprocal status, which results in the following:

rs(u4) =
2pqr− pq− 1

2
.

When u5 ∈ A5, then ec(u5) = 2; furthermore, we use the idea of reciprocal status,
resulting in the following:

rs(u5) =
2pqr− pq− qr + p + q + r− 3

2
.

When u6 ∈ A6, then ec(u6) = 2; also, we use the reciprocal status concept, which
results in the following:

rs(u6) =
2pqr− qr− 1

2
.

When u7 ∈ A7, it implies ec(u7) = 2; also, we use the idea of reciprocal status, resulting
in the following:

rs(u7) =
2pqr− pr− qr + p + q + r− 3

2
.

From the structure of P(Zpqr), we see that there are 19 types of edges in P(Zpqr) such
as: u1 ∼ ui, for i = 1, 2, 3, 4, 5, 6, 7, u2 ∼ ui, for i = 2, 3, 4, u3 ∼ ui, for i = 3, 4, u4 ∼ ui, for
i = 4, 5, u5 ∼ ui, for i = 5, 6, ui ∼ u6, for i = 6, 7, and u7 ∼ u7, where all ui values are as
assigned above. Therefore,
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Hrs(P(Zpqr)) = ∑
Eu1∼u1

y2u1 + ∑
Eu1∼u2

yu1+u2 + ∑
Eu1∼u3

yu1+u3 + ∑
Eu1∼u4

yu1+u4 + ∑
Eu1∼u5

yu1+u5

+ ∑
Eu1∼u6

yu1+u6 + ∑
Eu1∼u7

yu1+u7 + ∑
Eu2∼u2

y2u2 + ∑
Eu2∼u3

yu2+u3 + ∑
Eu2∼u7

yu2+u7

+ ∑
Eu3∼u3

y2u3 + ∑
Eu3∼u4

yu3+u4 + ∑
Eu4∼u4

y2u4 + ∑
Eu4∼u5

yu4+u5 + ∑
Eu5∼u5

y2u5

+ ∑
Eu5∼u6

yu5+u6 + ∑
Eu6∼u6

y2u6 + ∑
Eu6∼u7

yu6+u7 + ∑
Eu7∼u7

y2u7 .

(9)

Moreover, the cardinality of Eu1∼u1 is (pr−p−r+1
2 ). Similarly, we have:

|Eu1∼u2 | =(q− 1)(1 + (r− 1)(q− 1)(p− 1)), |Eu2∼u2 | =
(

q− 1
2

)
, |Eu3∼u3 | =

(
qr− q− r + 1

2

)
|Eu1∼u3 | =(qr− q− r + 1)(1 + (r− 1)(q− 1)(p− 1)), |Eu2∼u3 | = (q− 1)(1 + rq− r− q)

|Eu1∼u4 | =(r− 1)((p− 1)(q− 1)(r− 1) + 1), |Eu2∼u7 | = (q− 1)(pq− p− q + 1)

|Eu1∼u5 | =(pr− p− r + 1)((p− 1)(q− 1)(r− 1) + 1), |Eu3∼u4 | = (r− 1)(1 + rq− r− q)

|Eu1∼u6 | =(p− 1)(1 + (p− 1)(q− 1)(r− 1)), |Eu1∼u7 | = (p− 1)((p− 1)(q− 1)(r− 1) + 1),

|Eu4∼u4 | =
(

r− 1
2

)
, |Eu4∼u5 | = (r− 1)(1 + rp− r− p), |Eu5∼u5 | =

(
1 + pr− r− p

2

)
,

|Eu5∼u6 | =(p− 1)(pr− p− r + 1), |Eu6∼u6 | =
(

p− 1
2

)
, |Eu6∼u7 | = (p− 1)(1 + qp− q− p),

|Eu7∼u7 | =
(

1 + qp− q− p
2

)
.

Putting all these values in Equation (9), we obtain the required reciprocal status Hosoya
polynomial.

Theorem 12. Suppose P(G) is the power graph of G = Zr × Fp,q of order pqr. Then

Hrs(P(G), y) = (p− 1)yu1+u2 + (pr− p− r + 1)yu1+u3 + (r− 1)yu1+u4 + p(qr− q− r + 1)yu1+u5

+ p(q− 1)yu1+u6 +

(
q− 1

2

)
y2u2 + (1 + pr− r− p)(p− 1)yu2+u3 +

(
r− 1

2

)
y2u4

+

(
1 + pr− r− p

2

)
y2u3 + (r− 1)(1 + pr− r− p)yu3+u4 +

(
1 + qr− r− q

2

)
y2u5

+ p(r− 1)(1 + qr− r− q)yu4+u5 + p(q− 1)(qr− q− r + 1)yu5+u6 +

(
q− 1

2

)
y2u6 ,

where u1 = pqr− 1, u2 = 1
2 (pqr + pr− r− 1), u3 = 1

2 (pqr + pr− 2), u4 = 1
2 (2pqr− pq−

1), u5 = 1
2 (pqr + qr− 2), and u6 = 1

2 (pqr + qr− r− 1).

Proof. We obtain the following from Figure 1 and the partitions defined in Theorem 5:
When the node u1 = e, then ec(u1) = 1; furthermore, we incorporate the concept of

reciprocal status, which results in the following:

rs(u1) = pqr− 1.
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When u2 ∈ A2, it implies ec(u2) = 2; also, we incorporate the concept of reciprocal
status, which results in the following:

rs(u2) =
1
2

(
+ p(q− 1) + (r− 1) + p(1 + qr− r− q)

)
+ p− 2 + 1 + pr− p− r + 1

=
1
2
(pqr + pr− r− 1).

When u3 ∈ A3, then ec(u3) = 2; also, we use the reciprocal status concept, which
results in the following:

rs(u3) =
1
2
(2pqr− pq− 1).

When u4 ∈ A4, it implies ec(u4) = 2; further, we incorporate the concept of reciprocal
status, which results in the following:

rs(u4) =
1
2
(pqr + qr− 2).

When u5 ∈ A5, then ec(u5) = 2; additionally, we incorporate the concept of reciprocal
status, which results in the following:

rs(u5) =
1
2
(pqr + qr− r− 1).

From the structure of P(G), we see that there are 14 kinds of edges in P(G), such as:
u1 ∼ ui, for i = 2, 3, 4, 5, 6, u2 ∼ ui, for i = 2, 3, u3 ∼ ui, for i = 3, 4, u4 ∼ ui, for i = 4, 5,
u5 ∼ ui, for i = 5, 6, u6 ∼ u6, where ui values are assigned as above. Therefore:

Hrs(P(G), y) = ∑
Eu1∼u2

yu1+u2 + ∑
Eu1∼u3

yu1+u3 + ∑
Eu1∼u4

yu1+u4 + ∑
Eu1∼u5

yu1+u5 + ∑
Eu1∼u6

yu1+u6

+ ∑
Eu2∼u2

y2u2 + ∑
Eu2∼u3

yu2+u3 + ∑
Eu3∼u3

y2u3 + ∑
Eu3∼u4

yu3+u4 + ∑
Eu4∼u4

y2u4

+ ∑
Eu4∼u5

yu4+u5 + ∑
Eu5∼u5

y2u5 + ∑
Eu5∼u6

yu5+u6 + ∑
Eu6∼u6

y2u6 .

(10)

Now, the cardinality of Eu∼v values are

|Eu1∼u2 | = p− 1, |Eu1∼u3 | = pr− p− r + 1, |Eu1∼u4 | = r− 1,

|Eu1∼u5 | = p(qr− q− r + 1), |Eu1∼u6 | = p(q− 1), |Eu2∼u2 | =
(

q− 1
2

)
,

|Eu2∼u3 | = (p− 1)(1 + pr− r− p), |Eu3∼u3 | =
(

1 + pr− r− p
2

)
,

|Eu3∼u4 | = (r− 1)(1 + pr− r− p), |Eu4∼u4 | =
(

r− 1
2

)
,

|Eu4∼u5 | = p(1 + qr− r− q)(r− 1), |Eu5∼u5 | =
(

1 + qr− q− r
2

)
|Eu5∼u6 | = p(1 + qr− r− q)(q− 1), |Eu6∼u6 | =

(
q− 1

2

)
.

Putting all these values in Equation (10), we obtain the required result.

Following the procedure as used in the above theorems, we obtain the following
results.
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Theorem 13. Let P(Fp,qr), where r = 3 or q = 3 is a power graph of Fp,qr of order pqr. Then

Hrs(P(Fp,qr), y) = (p− 1)yu1+u2 + (pr− p− r + 1)yu1+u3 + (r− 1)yu1+u4 + p(qr− r)yu1+u5

+

(
p− 1

2

)
y2u2 + (p− 1)(1 + pr− r− p)yu2+u3 +

(
1 + pr− r− p

2

)
y2u3

+ (r− 1)(1 + pr− r− p)yu3+u4 +

(
r− 1

2

)
y2u4 + p(qr− r)(r− 1)yu4+u5

+ p
(

qr− r
2

)
y2u5 .

where u1 = pqr− 1, u2 = 1
2 (pqr + pr− r− 1), u3 = 1

2 (pqr + pr− 2), u4 = 1
2 (2pqr− 2r +

p− 1), and u5 = 1
2 (pqr + qr− 2).

Theorem 14. Suppose P(Fp,qr) is the power graph of Fp,qr of order pqr. Then

Hrs(P(Fp,qr), y) =(p− 1)yu1+u2 + p(qr− 1)yu1+u3 +

(
p− 1

2

)
y2u2 + p

(
qr− 1

2

)
y2u3 ,

where u1 = pqr− 1, u2 = 1
2 (pqr + p− 2), and u3 = 1

2 (pqr + qr− 2).

Theorem 15. Let P(Gi+5) be the power graph of a group Gi+5 of order pqr. Then

Hrs(Gi+5, y) =(p− 1)yu1+u2 + (pr− p− r + 1)yu1+u3 + (q− 1)yu1+u4 + pq(r− 1)yu1+u5

+

(
p− 1

2

)
y2u2 + (p− 1)(1 + pr− r− p)yu2+u3 +

(
1 + pr− r− p

2

)
y2u3

+ (q− 1)(1 + pq− q− p)yu3+u4 +

(
q− 1

2

)
y2u4 + pq

(
r− 1

2

)
y2u5 .

where u1 = pqr− 1, u2 = 1
2 (pqr + pq− q− 1), u3 = 1

2 (pqr + pq− 2), u4 = 1
2 (pqr + pq−

p− 1), and u5 = 1
2 (pqr + r− 2).

5. Conclusions

The main objective of this article was to examine the structural characteristics of the
power graphs of finite abelian and non-abelian groups. In general, finding the (reciprocal
status) Hosoya polynomials of graphs is very difficult. The researchers try to study the
same for different classes of graphs. The (reciprocal status) Hosoya polynomials of graphs
defined on algebraic structures have attracted the attention of researchers. In this paper, we
made a little effort and discussed the Hosoya polynomials as well as the reciprocal status
Hosoya polynomials of the power graphs associated with finite groups of order pq and pqr.

However, the (reciprocal status) Hosoya polynomials for general power graphs are
open and remain a challenge. In chemistry, an algebraic structure is critical for forming
chemical structures and investigating the different chemical characteristics of chemical
compounds included inside these structures.
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4. Caporossi, G.; Gutman, I.; Hansen, P.; Pavlović, L. Graphs with maximum connectivity index. Comput. Biol. Chem. 2003, 27, 85–90.

[CrossRef]
5. Graovac, A.; Ghorbani, M.; Hosseinzadeh, M.A. Computing fifth geometric-arithmetic index for nanostar dendrimers. J. Math.

Nanosci. 2011, 1, 33–42.
6. Hayat, S.; Wang, S.; Liu, J.B. Valency-based topological descriptors of chemical networks and their applications. Appl. Math.

Model. 2018, 60, 164–178. [CrossRef]
7. Hayat, S.; Imran, M.; Liu, J.B. An efficient computational technique for degree and distance based topological descriptors with

applications. IEEE Access 2019, 7, 32276–32296. [CrossRef]
8. Pólya, G. Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische verbindungen. Acta Math. 1937,

68, 145–254. [CrossRef]
9. Hosoya, H. On some counting polynomials in chemistry. DIscrete Appl. Math. 1988, 19, 239–257. [CrossRef]
10. Sagan, B.E.; Yeh, Y.N.; Zhang, P. The Wiener polynomial of a graph. Int. J. Quantum Chem. 1996, 60, 959–969. [CrossRef]
11. Cash, G.G. Relationship between the Hosoya polynomial and the hyper-Wiener index. Appl. Math. Lett. 2002, 15, 893–895.

[CrossRef]
12. Estrada, E.; Ivanciuc, O.; Gutman, I.; Gutierrez, A.; Rodríguez, L. Extended Wiener indices. A new set of descriptors for

quantitative structure-property studies. New J. Chem. 1998, 22, 819–822. [CrossRef]
13. Kelarev, A.; Quinn, S. Directed graphs and combinatorial properties of semigroups. J. Algebra 2002, 251, 16–26. [CrossRef]
14. Chattopadhyay, S.; Panigrahi, P. On Laplacian spectrum of power graphs of finite cyclic and dihedral groups. Linear Multilinear

Algebra 2015, 63, 1345–1355. [CrossRef]
15. Cameron, P.J.; Swathi, V.; Sunitha, M. Matching in power graphs of finite groups. arXiv 2021, arXiv:2107.01157.
16. Ma, X.; Feng, M.; Wang, K. The power index of a graph. Graphs Comb. 2017, 33, 1381–1391. [CrossRef]
17. Curtin, B.; Pourgholi, G.R. Edge-maximality of power graphs of finite cyclic groups. J. Algebr. Comb. 2014, 40, 313–330. [CrossRef]
18. Chattopadhyay, S.; Patra, K.L.; Sahoo, B.K. Vertex connectivity of the power graph of a finite cyclic group. Discret. Appl. Math.

2019, 266, 259–271. [CrossRef]
19. Ali, F.; Li, Y. The connectivity and the spectral radius of commuting graphs on certain finite groups. Linear Multilinear Algebra

2021, 69, 2945–2958. [CrossRef]
20. Rather, B.A.; Ali, F.; Ullah, N.; Mohammad, A.-S.; Din, A.; Sehra. Aα matrix of commuting graphs of non-abelian groups. AIMS

Math. 2022, 7, 15436–15452. [CrossRef]
21. Ali, F.; Fatima, S.; Wang, W. On the power graphs of certain finite groups. Linear Multilinear Algebra 2020, 1–15.
22. Rather, B.A.; Aijaz, M.; Ali, F.; Ullah, A. On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings.

AIMS Math. 2022, 7, 12635–12649. [CrossRef]
23. Hayat, U.; de Celis, Á.N.; Ali, F. Commuting graphs on coxeter groups, Dynkin diagrams and finite subgroups of SL(2, C). arXiv

2017, arXiv:1703.02480.
24. Ali, F.; Rather, B.A.; Fatima, N.; Sarfraz, M.; Ullah, A.; Alharbi, K.A.M.; Dad, R. On the topological indices of commuting graphs

for finite non-Abelian groups. Symmetry 2022, 14, 1266. [CrossRef]
25. Liu, J.B.; Zhang, T.; Wang, Y.; Lin, W. The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain. Discret. Appl.

Math. 2022, 307, 22–31. [CrossRef]
26. Jauhari, M.; Ali, F. Survey on topological indices and graphs associated with a commutative ring. J. Phys. Conf. Ser. 2020,

1562, 012008.
27. Rather, B.A.; Ali, F.; Ullah, A.; Fatima, N.; Dad, R. Aγ eigenvalues of zero divisor graph of integer modulo and Von Neumann

regular rings. Symmetry 2022, 14, 1710. [CrossRef]
28. Hosoya, H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated

hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [CrossRef]

http://doi.org/10.1021/ja01193a005
http://dx.doi.org/10.3390/e24020213
http://dx.doi.org/10.1016/S0097-8485(02)00016-5
http://dx.doi.org/10.1016/j.apm.2018.03.016
http://dx.doi.org/10.1109/ACCESS.2019.2900500
http://dx.doi.org/10.1007/BF02546665
http://dx.doi.org/10.1016/0166-218X(88)90017-0
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W
http://dx.doi.org/10.1016/S0893-9659(02)00059-9
http://dx.doi.org/10.1039/a709255e
http://dx.doi.org/10.1006/jabr.2001.9128
http://dx.doi.org/10.1080/03081087.2014.936435
http://dx.doi.org/10.1007/s00373-017-1851-y
http://dx.doi.org/10.1007/s10801-013-0490-5
http://dx.doi.org/10.1016/j.dam.2018.06.001
http://dx.doi.org/10.1080/03081087.2019.1700893
http://dx.doi.org/10.3934/math.2022845
http://dx.doi.org/10.3934/math.2022699
http://dx.doi.org/10.3390/sym14061266
http://dx.doi.org/10.1016/j.dam.2021.10.004
http://dx.doi.org/10.3390/sym14081710
http://dx.doi.org/10.1246/bcsj.44.2332


Molecules 2022, 27, 6081 19 of 19

29. Hosoya, H. Topological index as a common tool for quantum chemistry, statistical mechanics, and graph theory. Math. Comput.
Concepts Chem. 1986, 110–123.

30. Deng, H.; Chen, S. The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index. MATCH Commun.
Math. Comput. Chem. 2008, 59, 171–190.

31. Wagner, S. Extremal trees with respect to Hosoya index and Merrifield-Simmons index. MATCH Commun. Math. Comput. Chem.
2007, 57, 221–233.

32. Yu, A.; Tian, F. A kind of graphs with minimal Hosoya indices and maximal Merrifield-Simmons indices. MATCH Commun.
Math. Comput. Chem. 2006, 55, 103–118.

33. Liu, J.B.; Zhao, J.; He, H.; Shao, Z. Valency-based topological descriptors and structural property of the generalized sierpiński
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