Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Origin of Fruits
2.3. Preparation of Plant Material
2.4. Dry Matter Content
2.5. Total Polyphenols Measurement
2.6. Total Flavonoids Measurement
2.7. Total Anthocyanins Measurement
2.8. Identification and Separation of Phenolic Compounds
2.9. Identification and Separation of Anthocyanins
2.10. Allergy Potency Analysis
2.11. Antioxidant Activity Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter Content
3.2. Polyphenols Content
3.3. Flavonoids Content
3.4. Antioxidant Activity Properties
3.5. Allergenic Potency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skupień, K.; Oszmiański, J.; Ochmian, I.; Grajkowski, J. Characterization of selected physico-chemical features of blue honeysuckle fruit cultivar Zielona. Pol. J. Nat. Sci. 2007, 4, 101–107. [Google Scholar]
- Kaczmarska, E.; Gawroński, J.; Dyduch-Siemińska, M.; Najda, A.; Marecki, W.; Zebrowska, J. Genetic diversity and chemical characterization of selected Polish and Russian cultivars and clones of blue honeysuckle (Lonicera caerulea). Turk. J. Agric. For. 2015, 39, 394–402. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M.; Giurgiulescu, L. Blue honeysuckle berry (Lonicera caerulea L.) as raw material, is particularly predisponed to the production of functional foods. Carpathian J. Food Sci. Technol. 2020, 12, 144–155. [Google Scholar] [CrossRef]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2017, 16, 100237. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). LWT Food Sci. Technol. 2016, 67, 214–222. [Google Scholar] [CrossRef]
- Ochmian, I.; Grajkowski, J.; Skupien, K. Yield and chemical composition of blue honeysuckle fruit depending on ripening time. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2010, 67, 138–147. [Google Scholar]
- Wang, Y.; Zhu, J.; Meng, X.; Liu, S.; Mu, J.; Ning, C. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Food Chem. 2016, 197, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Short communication: Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokól-Lȩtowska, A.; Oszmiánski, J.; Piórecki, N.; Fecka, I. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef]
- Wojdyło, A.; Jáuregui, P.N.N.; Carbonell-Barrachina, Á.A.; Oszmiański, J.; Golis, T. Variability of phytochemical properties and content of bioactive compounds in lonicera caerulea L. var. kamtschatica berries. J. Agric. Food Chem. 2013, 61, 12072–12084. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łetowska, A.; Kucharska, A.Z. Health properties and composition of honeysuckle berry Lonicera caerulea L. An update on recent studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, R.; Hallmann, E.; Kowalska, K.; Rembiałkowska, E. Biocompounds content in organic and conventional raspberry fruits. Acta Fytotech. Zootech. 2015, 18, 40–42. [Google Scholar] [CrossRef]
- Świąder, K.; Hallmann, E.; Piotrowska, A. The effect of organic practices on the bioactive compounds content in strawberry fruits. J. Res. Appl. Agric. Eng. 2016, 61, 76–179. [Google Scholar]
- Ponder, A.; Hallmann, E. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivars. Food Chem. 2019, 301, 125295. [Google Scholar] [CrossRef] [PubMed]
- Hossny, E.; Ebisawa, M.; El-Gamal, Y.; Arasi, S.; Dahdah, L.; El-Owaidy, R.; Galvan, C.A.; Lee, B.W.; Levin, M.; Martinez, S.; et al. Challenges of managing food allergy in the developing world. World Allergy Organ. J. 2019, 12, 100089. [Google Scholar] [CrossRef] [PubMed]
- Tuppo, L.; Giangrieco, I.; Tamburrini, M.; Alessandri, C.; Mari, A.; Ciardiello, M.A. Detection of allergenic proteins in foodstuffs: Advantages of the innovative multiplex allergen microarray-based immunoassay compared to conventional methods. Foods 2022, 11, 878. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, C.; Ferrara, R.; Bernardi, M.L.; Zennaro, D.; Tuppo, L.; Giangrieco, I.; Ricciardi, T.; Tamburrini, M.; Ciardiello, M.A.; Mari, A. Molecular approach to a patient’s tailored diagnosis of the oral allergy syndrome. Clin. Transl. Allergy 2020, 10, 22. [Google Scholar] [CrossRef]
- Yu, W.; Freeland, D.M.H.; Nadeau, K.C. Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat. Rev. Immunol. 2016, 16, 751–765. [Google Scholar] [CrossRef]
- Ciardiello, M.A.; Tamburrini, M.; Liso, M.; Crescenzo, R.; Rafaiani, C.; Mari, A. Food allergen profiling: A big challenge. Food Res. Int. 2013, 54, 1033–1041. [Google Scholar] [CrossRef]
- Gargano, D.; Appanna, R.; Santonicola, A.; De Bartolomeis, F.; Stellato, C.; Cianferoni, A.; Casolaro, V.; Iovino, P. Food allergy and intolerance: A narrative review on Nutritional Concerns. Nutrients 2021, 13, 1638. [Google Scholar] [CrossRef] [PubMed]
- Wensing, M.; Akkerdaas, J.H.; van Leeuwen, W.A.; Stapel, S.O.; Bruijnzeel-Koomen, C.A.F.M.; Aalberse, R.C.; Bast, B.J.E.G.; Knulst, A.C.; van Ree, R. IgE to Bet v 1 and profilin: Cross-reactivity patterns and clinical relevance. J. Allergy Clin. Immunol. 2002, 110, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Ebner, C.; Hirschwehr, R.; Bauer, L.; Breiteneder, R.; Valenta, R.; Ebner, H.; Kraft, D.; Scheiner, O. Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). J. Allergy Clin. Immunol. 1995, 95, 962–969. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Z.; Wang, J.; Tian, S.; Duan, K.; Gao, Q. Bet v1 potential allergens are involved in anthracnose resistance of strawberry varieties. J. Berry Res. 2021, 11, 21–32. [Google Scholar] [CrossRef]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeniaca L.). Food Chem. 2018, 279, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Aninowski, M.; Kazimierczak, R.; Hallmann, E.; Rachtan-Janicka, J.; Fijoł-Adach, E.; Feledyn-Szewczyk, B.; Majak, I.; Leszczyńska, J. Evaluation of the potential allergenicity of strawberries in response to different farming practices. Metabolites 2020, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Nalewajko-Sieliwoniuk, E.; Pliszko, A.; Nazaruk, J.; Barszczewska, E.; Pukszta, W. Comparative analysis of phenolic compounds in four taxa of Erigeron acris s. l. (Asteraceae). Biologia 2019, 74, 1569–1577. [Google Scholar]
- Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 1968, 33, 72–77. [Google Scholar]
- Dóka, O.; Ficzek, G.; Bicanic, D.; Spruijt, R.; Luterotti, S.; Tóth, M.; Buijnsters, J.G.; Végvári, G. Direct photothermal techniques for rapid quantification of total anthocyanin content in sour cherry cultivars. Talanta 2011, 84, 341–346. [Google Scholar] [CrossRef]
- Hallmann, E.; Ponder, A.; Aninowski, M.; Narangerel, T.; Leszczyńska, J. The interaction between antioxidants content and allergenic potency of different raspberry cultivars. Antioxidants 2020, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Serafini, M.; Colombi, B.; del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Heaton, S. Organic farming, food quality and human health. A review of the evidence. Soil Assoc. 2009, 1, 680–685. [Google Scholar]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Comp. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Skupień, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 155–162. [Google Scholar] [CrossRef]
- Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.-S.; Wang, W. Phytochemical phenolics in organically grown vegetables. Mol. Nutr. Food Res. 2005, 49, 1136–1142. [Google Scholar]
- Dawson, J.K. Concentration and Content of Secondary Metabolites in Fruit and Leaves of Haskap (Lonicera caerulea L.). Ph.D. Thesis, Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, 2017. [Google Scholar]
- Massad, T.J.; Fincher, R.M.; Smilanich, A.M.; Dyer, L. A quantitative evaluation of major plant defense hypotheses, nature versus nurture, and chemistry versus ants. Arthropod. Plant Interact. 2011, 5, 125–139. [Google Scholar] [CrossRef]
- Hattas, D.; Scogings, P.F.; Julkunen-Tiitto, R. Does the growth differentiation balance hypothesis explain allocation to secondary metabolites in Combretum apiculatum, an African Savanna Woody Species? J. Chem. Ecol. 2017, 43, 153–163. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2017, 25, 4740–4757. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Rembiałkowska, E. Effects of organic and conventional production systems on the content of bioactive substances in four species of medicinal plants. Biol. Agric. Hortic. 2015, 31, 118–127. [Google Scholar] [CrossRef]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Balík, J.; Sochor, J.; Kramářová, D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hortic. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap berries (Lonicera caerulea L.)—A critical review of antioxidant capacity and health-related studies for potential value-added products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Okatan, V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hortic. 2020, 32, 79–85. [Google Scholar] [CrossRef]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive compounds and antioxidant capacity of small berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef]
- Santarelli, V.; Neri, L.; Sacchetti, G.; Di Mattia, C.D.; Mastrocola, D.; Pittia, P. Response of organic and conventional apples to freezing and freezing pre-treatments: Focus on polyphenols content and antioxidant activity. Food Chem. 2020, 308, 125570. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics Sustain. Agric. 2020, 1, 517–532. [Google Scholar] [CrossRef]
- Vidal, C.; Ruiz, A.; Ortiz, J.; Larama, G.; Perez, R.; Santander, C.; Ferreira, P.A.A.; Cornejo, P. Antioxidant responses of phenolic compounds and immobilization of copper in Imperata cylindrica, a plant with potential use for bioremediation of Cu contaminated environments. Plants 2020, 9, 1397. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Bok, V.V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Homayoonzadeh, M.; Moeini, P.; Talebi, K.; Roessner, U.; Hosseininaveh, V. Antioxidant system status of cucumber plants under pesticides treatment. Acta Physiol. Plant. 2020, 42, 161. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 2021, 69, 3566–3584. [Google Scholar] [CrossRef] [PubMed]
- Boateng, I.D.; Yang, X.-M. Do non-thermal pretreatments followed by intermediate-wave infrared drying affect toxicity, allergenicity, bioactives, functional groups, and flavor components of Ginkgo biloba seed? A case study. Ind. Crops Prod. 2021, 165, 113421. [Google Scholar] [CrossRef]
- Boateng, I.D.; Zhang, W.; Li, Y.-Y.; Saalia, F.K.; Yang, X.-M. Non-thermal pretreatment affects Ginkgo biloba L. seed’s product qualities, sensory, and physicochemical properties. J. Food Sci. 2022, 87, 94–111. [Google Scholar] [CrossRef]
2018 | Total Polyphenols mg GAE g−1 D.W. * | Total Flavonoids mg QE 100 g−1 D.W. ** | Total Anthocyanins mg CGE 100 g−1 D.W. *** |
---|---|---|---|
organic | 2118.19 ± 398.71 B | 1009.20 ± 199.91 B | 815.73 ± 213.26 B |
conventional | 2726.97 ± 248.95 A | 1342.45 ± 83.82 A | 1024.96 ± 127.47 A |
p-value | <0.0001 | <0.0001 | <0.0001 |
Nr 30 | 1684.52 ± 99.14 b | 921.05 ± 74.20 b | 443.04 ± 50.49 b |
Jolanta | 2341.30 ± 529.02 b | 1040.93 ± 250.90 b | 941.53 ± 221.46 b |
Indigo | 3241.92 ± 223.59 a | 1565.50 ± 109.52 a | 1376.46 ± 141.60 a |
p-value | <0.0001 | <0.0001 | <0.0001 |
2019 | |||
organic | 2414.66 ± 395.32 A | 1253.76 ± 190.23 A | 994.22 ± 185.03 A |
conventional | 2225.32 ± 304.86 B | 1192.57 ± 173.09 B | 860.12 ± 161.17 B |
p-value | 0.0005 | 0.030 | <0.0001 |
Nr 30 | 1508.91 ± 60.30 b | 858.65 ± 46.01 b | 538.36 ± 17.01 b |
Jolanta | 1663.84 ± 71.80 b | 827.43 ± 36.48 b | 583.28 ± 24.09 b |
Indigo | 3787.22 ± 127.42 a | 1983.41 ± 35.64 a | 1659.86 ± 49.78 a |
p-value | <0.0001 | <0.0001 | <0.0001 |
Compounds/Examined Combination | Cultivation Method | Cultivar | p-Value | ||||
---|---|---|---|---|---|---|---|
Organic | Conventional | Nr 30 | Jolanta | Indigo | Cultivation Method | Cultivar | |
dry matter | 14.55 1 ± 0.51 A2 | 14.66 ± 0.87 A | 14.09 ± 0.88 a | 12.93 ± 0.30 a | 16.80 ± 0.34 b | N.S. 3 | 0.0038 |
gallic acid | 9.70 ± 0.54 A | 11.21 ± 0.67 A | 10.31 ± 1.00 a | 11.14 ± 0.59 a | 9.92 ± 0.69 a | N.S. | N.S. |
chlorogenic acid | 29.64 ± 4.06 A | 25.81 ± 1.18 | 38.34 ± 3.17 a | 20.18 ± 1.35 b | 24.66 ± 0.58 b | <0.0001 | <0.0001 |
caffeic acid | 10.54 ± 1.83 B | 15.46 ± 2.86 A | 8.95 ± 0.69 b | 7.25 ± 0.65 b | 22.79 ± 1.97 a | <0.0001 | <0.0001 |
p-coumaric acid | 3.02 ± 0.20 A | 3.00 ± 0.18 A | 3.01 ± 0.29 ab | 2.64 ± 0.16 b | 3.37 ± 0.12 a | N.S. | <0.0001 |
quercetin-3-O-rutinoside | 122.46 ± 1.39 A | 98.50 ± 8.60 B | 114.02 ± 4.79 b | 91.56 ± 10.73 b | 125.85 ± 1.78 a | <0.0001 | <0.0001 |
quercetin-3-O-glucoside | 46.98 ± 8.28 B | 50.96 ± 11.21 A | 80.71 ± 6.53 a | 40.86 ± 9.55 b | 25.34 ± 5.76 c | 0.0460 | <0.0001 |
kaempferol-3-O-glucoside | 122.64 ± 26.27 A | 30.98 ± 2.45 B | 39.99 ± 3.82 c | 55.23 ± 13.16 b | 135.20 ± 39.45 a | <0.0001 | <0.0001 |
myricetin | 13.31 ± 1.09 B | 37.12 ± 2.11 A | 22.44 ± 2.84 b | 28.54 ± 5.27 a | 24.66 ± 6.68 ab | <0.0001 | 0.0080 |
luteolin | 5.82 ± 0.23 B | 7.81 ± 1.07 A | 5.41 ± 0.19 b | 9.42 ± 1.17 a | 5.63 ± 0.28 b | <0.0001 | <0.0001 |
quercetin | 1.65 ± 0.07 B | 3.05 ± 0.33 A | 1.77 ± 0.04 b | 2.46 ± 0.23 a | 2.82 ± 0.60 a | <0.0001 | <0.0001 |
kempferol | 10.38 ± 1.34 B | 12.27 ± 2.66 A | 18.01 ± 2.27 a | 10.01 ± 1.56 b | 5.94 ± 0.49 c | 0.0004 | <0.0001 |
cyanidin-3-O-glucoside | 499.60 ± 124.01 B | 722.12 ± 102.04 A | 277.96 ± 22.91 c | 668.06 ± 169.88 b | 886.58 ± 56.13 a | <0.0001 | <0.0001 |
peonidin-3-O-glucoside | 48.55 ± 9.34 B | 67.72 ± 6.11 A | 35.95 ± 3.54 c | 59.93 ± 12.01 b | 78.53 ± 4.16 a | <0.0001 | <0.0001 |
cyanidin-3-O-rutinoside | 174.15 ± 17.87 A | 172.37 ± 15.40 A | 110.37 ± 3.07 b | 208.10 ± 10.27 a | 201.32 ± 12.03 a | N.S. | <0.0001 |
ABTS | 624.90 ± 35.55 B | 676.31 ± 11.64 A | 635.20 ± 18.10 b | 616.02 ± 41.41 b | 700.60 ± 27.95 a | <0.0001 | <0.0001 |
FRAP | 585.30 ± 34.66 B | 630.12 ± 14.50 A | 578.13 ± 15.39 b | 587.45 ± 41.33 b | 657.54 ± 29.21 a | <0.0001 | <0.0001 |
DPPH | 661.18 ± 38.71 B | 720.77 ± 9.06 A | 673.56 ± 18.41 b | 646.40 ± 44.24 b | 752.97 ± 26.11 a | <0.0001 | <0.0001 |
Bet v1 | 106.76 ± 3.37 A | 101.51 ± 0.71 B | 95.41 ± 4.92 b | 108.77 ± 2.32 a | 108.92 ± 1.05 a | <0.0001 | <0.0001 |
profilins | 3.10 ± 0.18 B | 6.07 ± 0.11 A | 3.51 ± 0.20 b | 3.19 ± 0.19 b | 7.05 ± 0.16 a | <0.0001 | <0.0001 |
Compounds/Examined Combination | Cultivation Method | Cultivar | p-Value | ||||
---|---|---|---|---|---|---|---|
Organic | Conventional | Nr 30 | Jolanta | Indygo | Cultivation Method | Cultivar | |
dry matter | 13.09 1 ± 0.23 A2 | 12.33 ± 0.35 B | 11.97 ± 0.25 b | 13.45 ± 0.27 a | 12.71 ± 0.40 b | 0.0060 | 0.0007 |
gallic acid | 14.56 ± 1.67 B | 16.17 ± 1.27 A | 10.47 ± 0.27 c | 14.81 ± 1.01 b | 20.81 ± 0.34 a | 0.0001 | <0.0001 |
chlorogenic acid | 35.99 ± 4.94 A | 31.33 ± 1.44 B | 46.58 ± 3.86 a | 24.47 ± 1.64 b | 29.92 ± 0.71 b | <0.0001 | <0.0001 |
caffeic acid | 7.83 ± 0.56 A | 6.89 ± 0.26 B | 8.10 ± 0.27 a | 6.36 ± 0.36 b | 7.62 ± 0.71 ab | 0.0014 | 0.0001 |
p-coumaric acid | 3.14 ± 0.03 A | 2.60 ± 0.11 B | 3.05 ± 0.06 a | 2.85 ± 0.09 b | 2.70 ± 0.21 b | <0.0001 | 0.0002 |
quercetin-3-O-rutinoside | 136.60 ± 10.84 A | 135.79 ± 19.29 A | 100.62 ± 13.71 b | 154.40 ± 22.43 a | 153.56 ± 9.71 a | N.S. 3 | <0.0001 |
quercetin-3-O-glucoside | 81.16 ± 3.73 A | 74.04 ± 12.60 B | 61.16 ± 3.21 b | 62.80 ± 8.87 b | 108.85 ± 7.86 a | <0.0001 | <0.0001 |
kaempferol-3-O-glucoside | 11.02 ± 0.82 A | 8.16 ± 0.45 B | 9.62 ± 1.04 a | 8.78 ± 0.50 b | 10.36 ± 1.20 a | 0.0320 | <0.0001 |
myricetin | 9.10 ± 0.58 A | 8.56 ± 0.46 B | 7.98 ± 0.13 b | 11.01 ± 0.22 a | 7.49 ± 0.10 b | <0.0001 | 0.0009 |
luteolin | 1.91 ± 0.01 B | 1.93 ± 0.10 A | 1.88 ± 0.01 b | 2.11 ± 0.09 a | 1.77 ± 0.07 b | 0.0002 | <0.0001 |
quercetin | 79.05 ± 6.05 A | 69.77 ± 13.31 A | 111.58 ± 5.96 a | 62.06 ± 9.60 b | 49.60 ± 2.37 c | N.S. | <0.0001 |
kempferol | 14.38 ± 0.09 B | 16.67 ± 0.68 A | 14.30 ± 0.13 b | 16.27 ± 0.80 a | 16.00 ± 0.81 a | 0.0001 | 0.0022 |
cyanidin-3-O-glucoside | 610.08 ± 223.46 A | 498.83 ± 17833 B | 228.84 ± 5.22 b | 35.51 ± 2.72 c | 1399.02 ± 63.10 a | <0.0001 | <0.0001 |
peonidin-3-O-glucoside | 84.69 ± 19.76 A | 78.58 ± 19.31 A | 56.15 ± 3.43 b | 161.96 ± 4.94 a | 26.80 ± 1.22 c | N.S. | <0.0001 |
cyanidin-3-O-rutinoside | 160.90 ± 21.76 A | 161.44 ± 35.70 A | 150.21 ± 12.25 b | 266.00 ± 21.33 a | 67.31 ± 2.80 c | N.S. | <0.0001 |
ABTS | 572.25 ± 23.15 B | 652.16 ± 11.17 A | 592.22 ± 24.73 b | 603.97 ± 36.28 b | 640.43 ± 12.11 a | <0.0001 | <0.0001 |
FRAP | 554.74 ± 27.57 B | 624.29 ± 9.85 A | 572.36 ± 27.06 b | 568.94 ± 33.47 b | 627.26 ± 17.98 a | <0.0001 | <0.0001 |
DPPH | 621.82 ± 20.46 B | 696.09 ± 13.58 A | 649.77 ± 17.02 b | 651.11 ± 39.48 b | 675.98 ± 11.18 a | <0.0001 | <0.0001 |
Bet v1 | 142.21 ± 3.37 A | 133.41 ± 0.71 B | 141.78 ± 4.92 a | 138.39 ± 2.32 ab | 139.27 ± 1.05 b | <0.0001 | <0.0001 |
profilins | 5.37 ± 0.18 A | 5.27 ± 0.11 A | 5.28 ± 0.20 a | 5.45 ± 0.19 a | 5.24 ± 0.16 a | N.S. | N.S. |
2018 | Organic Berries | Conventional Berries |
---|---|---|
polyphenols | ||
Bet v1 | 0.472 | 0.987 |
p-value | 0.0041 | <0.0001 |
2019 | organic berries | conventional berries |
polyphenols | ||
Bet v1 | 0.581 | 0.872 |
p-value | 0.017 | 0.0001 |
2018 | organic berries | conventional berries |
polyphenols | ||
profilins | 0.128 | 0.921 |
p-value | N.S. | 0.0041 |
2019 | organic berries | conventional berries |
polyphenols | ||
profilins | 0.505 | 0.911 |
p-value | 0.0032 | 0.0001 |
2018 | organic berries | conventional berries |
polyphenols | ||
antioxidant activity (ABTS) | 0.886 | 0.857 |
p-value | <0.0001 | 0.0005 |
2019 | organic berries | conventional berries |
polyphenols | ||
antioxidant activity (ABTS) | 0.925 | 0.834 |
p-value | <0.0001 | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponder, A.; Najman, K.; Aninowski, M.; Leszczyńska, J.; Głowacka, A.; Bielarska, A.M.; Lasinskas, M.; Hallmann, E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. Molecules 2022, 27, 6083. https://doi.org/10.3390/molecules27186083
Ponder A, Najman K, Aninowski M, Leszczyńska J, Głowacka A, Bielarska AM, Lasinskas M, Hallmann E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. Molecules. 2022; 27(18):6083. https://doi.org/10.3390/molecules27186083
Chicago/Turabian StylePonder, Alicja, Katarzyna Najman, Mateusz Aninowski, Joanna Leszczyńska, Agnieszka Głowacka, Agnieszka Monika Bielarska, Marius Lasinskas, and Ewelina Hallmann. 2022. "Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries" Molecules 27, no. 18: 6083. https://doi.org/10.3390/molecules27186083
APA StylePonder, A., Najman, K., Aninowski, M., Leszczyńska, J., Głowacka, A., Bielarska, A. M., Lasinskas, M., & Hallmann, E. (2022). Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. Molecules, 27(18), 6083. https://doi.org/10.3390/molecules27186083