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Abstract: In this study, the structural and microwave properties of BaTiZrO3 films deposited on
alumina substrate were investigated. The films were deposited by RF magnetron sputtering in Ar/O2

ambient atmosphere. The research of the island films at the initial stages of the growth showed that
the pyramidal type of growth prevails. It was demonstrated that as-deposited film is a BaZrTiO3 solid
solution with a deficiency of titanium compared to the target. The air annealing at temperatures of
1100–1200 ◦C leads to the formation of a well-formed crystalline solid solution of BaZr0.3Ti0.7O3 with
a predominant orientation (h00). The investigation of microwave parameters of the films fabricated
at different conditions showed that the best performance with the tunability of 4.6 (78%), and the
Q-factor of 18 to 40 at 2 GHz was achieved at annealing temperature of 1150 ◦C.

Keywords: barium titanate–zirconate; rf magnetron sputtering; initial stages of growth; microwave
properties

1. Introduction

Ferroelectrics (FE) are materials with a strong dependence of the dielectric permittivity
on the applied electric field that makes them promising for microwave applications. Electri-
cally tunable capacitors, phase shifters, and delay lines can be implemented on the basis of
ferroelectric materials [1–5]. In comparison with semiconductors, the advantages of FE are
high operating power and low losses at microwaves [6,7]. The most studied ferroelectric
material for microwave applications is a solid solution based on barium and strontium
titanates BaxSr1-xTiO3 (BST) [1,2].

Despite the widespread implementation, BST thin films have the inherent problem
of high dielectric loss that can be partly attributed to the unstable oxidation state of tita-
nium that can be easily reduced from Ti4+ to Ti3+ [8,9] and crucially restricts the practical
applications [10,11]. There is another barium–titanate-based ferroelectric solid solution
where the titanium atom in the perovskite unit cell may be replaced by a zirconium atom—
BaTixZr1-xO3 (BZT). Unlike BST, where both components of the solid solution (BaTiO3
and SrTiO3) are nonlinear dielectrics, BZT is mixed from ferroelectric BaTiO3 and linear
dielectric BaZrO3. BaTixZr1-xO3 obtained by substituting Ti ion at the B site of BaTiO3 with
Zr one in compounds of the perovskite structure ABO3 is a possible alternative to BST. Ti4+

is substituted by chemically more stable Zr4+ [12–15], which not only suppresses the con-
duction by electron hopping between Ti4+ and Ti3+, but also reduces dielectric loss [16–19].
Moreover, the BZT system is known to change significantly with Zr content and exhibits a
pinched phase transition at x about 0.2, i.e., all the three phase transitions that correspond
to pure BaTiO3 are merged together or pinched into one broad peak [13–15,20–22]. BZT
composition with x = 0.2 also demonstrates very good dielectric nonlinearity at room
temperature [13–15]. BZT is potentially promising for microwave electrically tunable
applications also, but has been little studied from this point of view.

A number of papers have been published, in which the structural and electrophysical
properties of solid solutions with titanium replacement by zirconium are investigated both
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in bulk and in thin film form [12,16,18,21,23–36]. Barium titanate–zirconate films were
obtained by laser evaporation [23–32], ion-plasma sputtering [16,18,33,34], and sol-gel
technology [21]. In the vast majority of works, experimental data on dielectric properties in
BZT structures are given for the frequency range of 1 kHz–1 MHz.

It should be noted that the high dielectric nonlinearity of capacitive elements based
on BZT films is demonstrated for sandwich “metal-dielectric-metal” (MDM) structures,
i.e., in cases when the film is formed on a conductive electrode [18,21,23,26–29,31,32]. The
capacitance of an MDM capacitor, where the gap value is determined by the thickness of the
film (usually 100–500 nm), is easily controlled by low bias voltages, but precisely because of
this, the use of MDM tunable capacitors is possible in small-signal devices only. One of the
main potential advantages of FE devices over semiconductor analogues, namely the ability
to operate at high power levels as an electrically tuned element, can only be realized in a
planar design on a dielectric substrate. In the works devoted to the studies of BZT planar
ferroelectric structures on dielectric substrates, when both electrodes are formed on the FE
layer, data on tunability of the order of 50% are given [16,24,25,30,33,34]. The best result for
today on the tunability of planar BZT capacitive elements at 75% (at 1 kHz) was published
in [34] on a rather expensive single crystal MgO substrate, which is not an optimal substrate
for microwave applications due to cost, low mechanical strength, and hygroscopy. In
addition, the same authors [33] provide data on significant degradation of tunability and
losses of BZT/MgO planar capacitors at microwaves. Therefore, additional researches are
needed to obtain improved tunability of BZT thin films on dielectric substrates with high
Q-factor and low cost.

As one of such substrate material, perspective for microwave applications, polycrys-
talline aluminum oxide can be proposed. Alumina has excellent mechanical and dielectric
properties: high mechanical hardness and chemical stability, thermal coefficient of linear
expansion 8 × 10−6 K−1, which is close to BZT one, high thermal conductivity coefficient of
about 30 W/m·K, stable dielectric permittivity 9.7, low losses at microwaves (tan δ < 10−4

at 10 GHz), and extremely low cost [4]. Today, there is no information about tunable BZT
planar elements on alumina substrate in the literature.

In this regard, the purpose of this work is to search for technological approaches that
allow to obtain thin layers of barium titanate–zirconate that exhibit high nonlinearity on
alumina substrate, to study the structure and dielectric properties of thin BZT layers, with
a view to their further application as part of high-power microwave nonlinear elements.

2. Experiment

The study of the structural properties of BZT films on dielectric substrates consisted of
two stages: the study of the nucleation stage of the film formation on the substrate in order
to understand the mechanisms of its growth, and the study of the structural and electrical
properties of solid films and capacitors based on them. Deposition of the films was carried
out by RF magnetron sputtering of a ceramic target of the composition BaTi0.8Zr0.2O3 on
aluminum oxide substrates. Before the deposition process, the target was pre-sputtered
away from the substrate holder for 30 min in order to clean the surface. The temperature
of the substrate Ts during deposition was controlled using a thermocouple located under
the substrate holder and varied in the range of 700—880 ◦C for different series of samples.
An Ar/O2 mixture was used as the working gas, the oxygen content in the mixture varied
from 25 to 100%. The working gas pressure was ranged from 2 to 10 Pa.

At the stage of investigation of the initial stages of film growth, the formation time
of island structures was 60 s at a working gas pressure of 10 Pa. The temperature of the
substrates varied in the range of 700–880 ◦C. After deposition, the samples were cooled in
the atmosphere of the working gas at atmospheric pressure at a rate of 2–3 ◦C/min.

The structure of island films was studied by the medium energy ion scattering (MEIS)
method, which is a modification of the widely used Rutherford ion backscattering (RBS)
method and differs from the latter in the range of ion energies of the probing beam (units—
tens of MeV in the RBS and tens-hundreds of keV in the MEIS). The reduction of the ion
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beam energy makes it possible to obtain a high, up to 0.5 nm, depth resolution, which is
especially important when studying the initial stages of film growth [37].

In this work, He+ ion beams were used to study the films, and an electrostatic analyzer
was used to register them. The scattering angle was 120◦. Energy spectra of scattered
ions were obtained for each sample in the mode of random orientation of the beam Yr(E).
Based on the Yr(E) dependence, by comparing experimentally measured and calculated
spectra, the composition of films, their thickness, as well as the degree of film coating of
the substrate were determined.

Solid BZT films were deposited on substrates heated to 800 ◦C. The deposition was
started at a working gas pressure of 10 Pa, which was reduced until 2 Pa for the first 30 min
of deposition. The total time of deposition was 3 h, and the thickness of films was 500 nm.
After deposition, the films were annealed in a tubular furnace at various temperatures in
the air for 2 h. The temperature and time of heating, annealing and cooling of the samples
were controlled by the temperature regulation and control system TRM-251 (OVEN-PROM,
St. Petersburg, Russia).

The crystal structure and phase composition of solid films were studied by X-ray
diffraction (XRD) using a DRON-6 diffractometer (Burevestnik, St. Petersburg, Russia) on
the emission spectral line Cu Kα1 (λ = 1.5406 Å). Powder diffraction method in Bragg–
Brentano geometry was used. The scanning was performed from 20 to 60 degrees with
0.2-degree step.

For electrical studies, planar capacitors with a gap width of 5 µm were formed on the
basis of BZT films. The upper electrodes of the capacitors were made by thermal deposition
of a 1 µm Cu film with an adhesive chromium sublayer, followed by lithography and
chemical etching. Measurements of capacitance C and quality factor Q = 1/tan δ were
performed at a frequency 2 GHz using a half-wave strip resonator and HP 8719C vector
analyzer. The resonator provides an unloaded Q-factor of 1000 (the accuracy of measuring
capacitance and Q-factor is 1 and 5%, respectively), as well as the possibility of supplying a
control voltage up to 1000 V. The tunability of the capacitors was calculated as the ratio
of capacitances at zero and maximum applied control voltage (n = C(0 V)/C (Umax)) and
additionally as n = (Cmax − Cmin)/Cmax to compare the results with other works.

3. Results and Discussion
3.1. Initial Stages of BZT Film Growth

The source of important information, which is necessary to understand the mecha-
nisms of growth of solid films, is the study of the initial stages of their formation. It is
well known that the properties of thin films (orientation and dimensions of crystallites,
stoichiometry of the composition of the film and the presence of inclusions of secondary
phases) significantly depend on the conditions under which the nucleation of the film on
the substrate is carried out [38]. At the initial stage of film growth, depending on the den-
sity of the flow of atoms reaching the substrate, as well as depending on the temperature,
structure and composition of the substrate, the lifetime of adatoms on surface can vary
widely, determining the mechanisms of mass transfer, nucleation and, consequently, the
formation of films [37]. Thus, at low substrate temperatures, as a rule, the mechanism of
surface diffusion of adatoms prevails, and at high temperatures the mechanism of diffusion
in the gaseous phase prevails. If a surface diffusion mechanism is implemented on the
substrate, a time-constant source of atoms will lead to the lateral growth of islands (their
area will grow faster than the height). For the case when the diffusion mechanism through
the gaseous phase is realized in the system, the islands will mainly grow in height, forming
a columnar structure [38].

When studying the initial stages of the growth of barium titanate–zirconate films, the
variable technological parameters for the formed samples were the substrate temperature
and the ratio of argon and oxygen in the working gas. Data on the relative content of
components, the height of islands, the degree of substrate covered by film, the total amount
of material on the substrate are given in Table 1. Here, hcov (h on covered segments) is the
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thickness of the film on the coated areas of the substrate; C is the degree of the substrate
covered by film; Amount is an estimate of the total amount of the deposited material
BaTiZrO3 in units of 1015 united atoms per cm2, where the united atom is a molecule of
BaaTibZrcOd, where (a + b + c + d) = 1. The height of the peaks of Ba, Zr, and Ti relative
to the signal level of the substrate is determined by the degree of coverage, the width of
the peaks is determined by the average thickness on the covered areas, and the ratio of
amplitudes is determined by the elemental composition. The elemental composition (Ba,
Ti, and Zr content) in island films determined by the MEIS method corresponds to the
composition of the sputtered target with an accuracy of 5%.

Table 1. Characteristics of island films investigated.

No. Ar/O2 Ts Ba Zr Ti O hcov, nm C, % Amount

2264 0 880 0.198 0.039 0.163 0.60 3.71 25 7.5
2265 0.5 880 0.199 0.040 0.161 0.60 2.91 38 7.3
2266 1 880 0.199 0.041 0.160 0.60 3.6 88 7.6
2267 0 700 0.199 0.039 0.162 0.60 3.53 30 7.4
2268 0.5 700 0.199 0.040 0.161 0.60 2.7 44 7.2
2269 1 700 0.200 0.040 0.160 0.60 3.96 76 7.5

The energy spectra of backscattered He+ ions from BZT island films deposited in
various gas mixtures at substrate temperatures of 700 and 880 ◦C are shown in Figure 1. The
spectra have no significant differences, which indicates a single mechanism of nucleation
in the studied ranges of gas compositions and temperatures. The triangular shape of
peaks with a tightened low-energy front in the spectrum of backscattered ions indicates the
pyramidal form of BZT islands on the substrate surface [37].
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Figure 1. Spectra of backscattered He+ ions from BZT island films deposited at different compositions
of the working gas at substrate temperatures of 700 ◦C (a) and 880 ◦C (b).

Let us analyze the dependence of the thickness of BZT island films h (island heights)
and the substrate area covered by islands C on the composition of the working gas for
films deposited at substrate temperatures of 700 and 880 ◦C. These parameters can give
an information about the mechanisms of mass transfer of adatoms before they join to an
island during the initial stage of film growth. For example, an increase in the average
height of the islands with a simultaneous reduction in the area of the substrate occupied by
them indicates a change in the mechanism of film growth from “layer-by-layer” to “island”
one [39]. In our case, the analysis indicates that an increase in the concentration of argon in
the composition of the working gas does not lead to a change in the heights of the islands
on the film-covered areas of the substrate surface (Figure 2a), while the area of substrate
surface covered by film increases (Figure 2b).

Since the heights of the islands are quite large and do not change significantly when the
deposition temperature changes, it can be concluded that the mechanism of mass transfer
of adatoms through the gaseous phase prevails under these conditions. This mechanism
ensures the pyramidal type of growth of BZT films [40]. An increase in the substrate area
covered by film with raising in the argon content in the working gas is due to the more
intensive sputtering of the target by heavier argon atoms. An increase in the sputtering
rate leads to an increase in the density of the flow of atoms reaching the substrate, which,
in turn, determines a more intensive filling of the substrate with islands.

Thus, the studied temperature range of deposition of barium titanate–zirconate films
can be considered as a range in which the mass transfer of adatoms through the gaseous
phase prevails, which determines the formation of a columnar film structure at the initial
stage of the growth. The presence of such a structure on the substrate suggests that with
further growth of the film at temperatures considered, a predominantly oriented phase
may form [38,39]. A change in the ratio of argon and oxygen in the composition of the
working gas does not change the shape of the islands, but affects the deposition rate of
the film.
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3.2. Structure Characterization of BZT Films

Figure 3 shows diffractograms of solid BZT films deposited in various gas mixtures
at a substrate temperature of 800 ◦C. Dotted lines on the left indicate the positions of
reflexes for pure BaZrO3 and on the right for BaTiO3. The reflexes from the substrate are
marked with diamonds. A number of factors attract attention to themselves: (1) For film
deposited in pure oxygen medium the polycrystalline highly defective layer consisted of
barium zirconate (22, 31, and 43 deg) and probable impurity phases of titanium oxides
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(PDF 8–117, 21–1272, and 29–1360 marked by red dotted lines) and barium polytitanates,
presumably Ba2TiO4 and BaTi4O9 (PDF 35–813 and 34–70 marked by blue dotted lines),
is formed. (2) For films deposited at a reduced oxygen content in the working gas, a shift
of the angular positions of the reflexes towards large angles is observed, which indicates
the formation of BaZrTiO3 solid solution with a deficiency of titanium compared to the
target. In addition, a decrease in the oxygen content in the gas mixture leads to a significant
increase in the intensity of BZT reflexes, which means an improvement in the crystal
structure of the solid solution. A decrease in the oxygen concentration in the working gas
does not exclude the possibility of the presence of titanium oxides and barium polytitanates
secondary phases on the substrate along with the main phase. (3) Films deposited in a gas
mixture Ar/O2 2:1 and Ar/O2 3:1 differ in BZT texture: (111) and (100), respectively.
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According to Figure 3, sputtering of the BaTi0.8Zr0.2O3 ceramic target in an oxygen-
containing gas mixture does not lead to the formation of the same BZT solid solution on the
substrate. A similar situation is described in [33], where sputtering of the BaTi0.7Zr0.3O3
target in a 9:1 Ar/O2 gas mixture and at similar deposition temperatures led to the forma-
tion of a BZT film with a lattice constant of 4.12 Å, which corresponds to a solid solution of
BaTi0.3Zr0.7O3. The authors make an assumption about the presence of oxygen vacancies
in the film, which increase the lattice parameter of it in comparison with the target. In our
case, two facts prevent the confirmation of this supposition. (1) If oxygen vacancies are
the reason for the increase in the lattice parameter of the deposited film, then deposition
in an environment with a high concentration of oxygen should lead to a decrease in their
concentration and, accordingly, to a decrease in the lattice parameter of the formed layer.
However, it does not happen. (2) The MEIS elemental analysis confirms the almost stoichio-
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metric transfer of the target components to the substrate (see Table 1). In other words, the
system on the substrate does not experience a shortage of elements for the formation of a
solid solution. Then, the probable explanation for the discrepancy between the composition
of the solid solution of the film and the target is the presence of secondary phases on the
substrate along with BZT.

Thus, according to XRD data, as well as [21,33,41,42], the formation of solid solutions
with the substitution of the position of titanium in the perovskite cell on dielectric substrates
in an oxygen-containing medium is difficult, which is apparently due to the presence of
secondary titanium and barium oxides on the substrate. The rate of the formation of these
oxides exceeds the rate of the formation of zirconium ones (redox potentials of barium,
titanium and zirconium in this case are −2.9 V, −1.75 V, and −1.53 V, respectively) [43]. A
decrease in the oxygen content in the working gas leads to the suppression of the formation
of secondary titanium-containing oxides and to an increase in the concentration of titanium
in the BZT solid solution.

Figure 4 shows diffractograms of the films described above, but subjected to high-
temperature annealing in air at a temperature of 1100 ◦C for two hours (here dotted lines
on the right indicate the positions of reflexes for BaTi0.8Zr0.2O3—the composition of the
sputtered target). The data of X-ray diffraction analysis indicate a shift of the angular
positions of reflexes towards large angles as a result of annealing. The reflex shift shows
a decrease in the unit cell parameter from 4.11 Å to 4.07 Å due to the introduction of Ti+4

ions with a small ionic radius into the solid solution lattice.
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Thus, post-growth high-temperature treatment radically changes the structural prop-
erties of the studied films. Since the temperature of formation of a solid solution of BZT is
significantly higher than the temperature of formation of both BaTiO3, BaZrO3, and simple
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titanium oxides [35,43], then during high-temperature annealing, titanium is redistributed
between the secondary phases of titanium-containing oxides and BZT to form a solid
solution of the composition BaZr0.3Ti0.7O3 (see inset with reflex (200)). In addition, for films
deposited in a gas medium with a reduced oxygen content, annealing leads to a significant
increase in the intensity of dominant reflexes with a simultaneous decrease in their integral
width, which indicates an improvement in the quality of the crystal lattice of the coatings
under study.

Figure 5 shows comparative diffractograms of BZT films deposited in an Ar/O2:3/1
gas mixture and subjected to high-temperature annealing at various temperatures. Accord-
ing to XRD analysis, films annealed at temperatures of 1100–1200 ◦C are a well-formed
crystalline solid solution of BaZr0.3Ti0.7O3 with a predominant orientation (h00) without
signs of inclusions of secondary phases.
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Figure 5. Diffractograms of BZT thin films on Al2O3 substrates deposited in the gas mixture
Ar/O2:3/1 after annealing at different temperatures.

A diffractogram of a sample annealed at a temperature of 1000 ◦C looks different.
Attention is drawn to relatively weak peak intensities, tightened leading edges, as well as
doublets on 23 and 44 degrees, which indicates the presence of secondary phases of barium
polytitanates and crystal lattice defects in the film.

3.3. Electrical Properties

Planar capacitors were formed on the basis of BZT films deposited in the gas mixture
Ar/O2:3/1 and annealed at various temperatures. The dependences of the capacitance
normalized to the maximum value on the strength of the control field of the capacitors
under study are shown in Figure 6. It follows from the graph that the capacitor based
on the film annealed at 1000 ◦C exhibits the least tunability, which is explained by the
defects in the crystal lattice of the solid solution and the possible presence of secondary
phases (see Figure 5). The tunability of capacitors formed on the basis of films annealed at
temperatures of 1100, 1150, and 1200 ◦C is 4.3, 4.6, and 3.5, respectively. The decrease in the
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nonlinearity of capacitor based on the film subjected to annealing at maximum temperature
is apparently due to the occurrence of mechanical defects on the surface of the films (cracks)
as a result of annealing, which is explained by the difference in the temperature expansion
coefficients of the BZT film and the substrate. The tunability of the capacitor 4.6 times (78%)
is the best result for planar BZT capacitors today.
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The dependences of the Q-factor of the studied capacitive structures on the strength
of the control field measured at a frequency of 2 GHz are shown in Figure 7. Two groups
of curves can be distinguished on the graph. (1) The Q-factor of capacitors based on films
annealed at temperatures of 1100 and 1150 ◦C increases from 18 to 40 under the action
of an applied field, which can be explained by a well-formed predominantly oriented
crystal structure of a solid solution (see Figure 5). (2) The relatively low Q-factor of
capacitors based on films formed by annealing at 1000 and 1200 ◦C is due to the defective
polycrystalline structure of BZT films in the first case, when grain boundaries make an
additional contribution to dielectric losses, and mechanical defects in films resulting from
annealing at 1200 ◦C.

Table 2 presents comparative data on the tunability of MDM and planar capacitors
based on barium titanate-zirconate films. It follows from the table data that the capacitors
obtained in this work exhibit high dielectric nonlinearity at microwaves, which is the best
result published today for both sandwich and planar capacitive structures based on BZT
films. Taking into account the fact that the high tunable BZT films were grown for the first
time on alumina substrates, this result looks promising for microwave electrically tunable
applications.
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Table 2. Data on the tunability of MDM and planar capacitors based on barium titanate–zirconate
films.

Composition Substrate Construction Tunability, % Reference

Mn-BaTi0.8Zr0.2O3 Pt/Si MDM 69 [26]
BaTi0.65Zr0.35O3 Pt/Si MDM 42 [21]
BaTi0.8Zr0.2O3 Pt/Si MDM 69 [32]

BaTi0.85Zr0.15O3 CaRuO3/Pt/Si MDM 75 [28]
BaTi0.8Zr0.2O3 LaSrMnO3/Pt/Si MDM 73 [29]
BaTi0.8Zr0.2O3 Pt/Si MDM 70 [23]
BaTi0.8Zr0.2O3 Sn doped In2O3 MDM 53 [27]
BaTi0.8Zr0.2O3 F doped SnO2 MDM 44 [27]
BaTi0.8Zr0.2O3 Pt/Si MDM 59 [27]
BaTi0.8Zr0.2O3 Pt/LaAlO3 MDM 44 [18]
BaTi0.9Zr0.1O3 Pt/LaAlO3 MDM 59 [18]
BaTi0.8Zr0.2O3 LaAlO3/Sr2AlTaO6 planar 50 [24]
BaTi0.8Zr0.2O3 MgO planar 50 [25]

Mn-BaTi0.8Zr0.2O3 MgO planar 53 [30]
BaTi0.7Zr0.3O3 MgO planar 76 (1 MHz) [34]
BaTi0.7Zr0.3O3 Al2O3 planar 78 (3 GHz) This work

4. Conclusions

The study of the initial stages of BZT films growth has shown that in the temperature
range of 700–880 ◦C the pyramidal type of growth prevails. An increase the argon content
in the composition of the working gas does not change the mechanism of film growth, but
increases the rate of film deposition.

It was demonstrated that the BZT film as-deposited at a reduced oxygen content in the
working gas on Al2O3 substrate is a BaZrTiO3 solid solution with a deficiency of titanium
compared to the target. High-temperature annealing of films investigated leads to the
formation of a crystalline solid solution of BaZr0.3Ti0.7O3 with a structure and electrical
properties depended on the annealing temperature. BZT films annealed at 1100–1150 ◦C
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have a well-formed crystal lattice with a predominant orientation (h00) at the absence of
secondary phase inclusions; their component composition is close to the composition of the
target, which has a positive effect on their electrophysical properties, in particular on the
nonlinearity and the level of dielectric losses.

The tunability of capacitors formed on the basis of films annealed at a temperature of
1150 ◦C of 4.6 times (78%) is the best result for planar BZT capacitors today. A comparison of
the results obtained with the literature data showed that planar BZT structures on alumina
substrate exhibit promising characteristics for an elaboration of high-power microwave
tunable devices.
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