Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Evaluation of AChE and BChE Inhibition by Novel Benzimidazole-Based Thiazoles
Structure–Activity Relationship of acetylcholinesterase and butyrylcholinesterase activities
2.3. Docking Study
3. Experimental
3.1. General Information
3.2. General Procedure for the Synthesis of Benzimidazole-Bearing 1,3-Thiazole Scaffolds (1–24)
3.3. Spectral Analysis
3.3.1. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (1)
3.3.2. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-hydroxyphenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (2)
3.3.3. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene) hydrazinyl)thiazol-4-yl)phenol(3)
3.3.4. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)hydrazinyl)-4-(3-methoxyphenyl)thiazole (4)
3.3.5. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)hydrazinyl)-4-(p-tolyl)thiazole (5)
3.3.6. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (6)
3.3.7. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-(2-nitrophenyl)thiazole (7)
3.3.8. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-(3-nitrophenyl)thiazole (8)
3.3.9. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3-hydroxy-2-nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (9)
3.3.10. (E)-5-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-([1,1’-biphenyl]-4-yl)ethylidene)hydrazinyl)thiazol-4-yl)-2-(dimethylamino)-4-nitrophenol (10)
3.3.11. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (11)
3.3.12. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(4-methyl-2-nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (12)
3.3.13. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene) hydrazinyl)-4-(p-tolyl)thiazole (13)
3.3.14. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene) hydrazinyl)-4-(3-methoxyphenyl)thiazole (14)
3.3.15. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene) hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (15)
3.3.16. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene) hydrazinyl) thiazol-4-yl)phenol (16)
3.3.17. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(2-nitrophenyl)thiazole (17)
3.3.18. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(3-nitrophenyl)thiazole (18)
3.3.19. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(p-tolyl)thiazole (19)
3.3.20. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(3-methoxyphenyl)thiazole (20)
3.3.21. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (21)
3.3.22. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(2-methoxyphenyl)thiazole (22)
3.3.23. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene) hydrazinyl)-4-(4-bromophenyl)thiazole (23)
3.3.24. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-(p-tolyl)thiazole (24)
3.4. Molecular Docking Protocol
3.5. Acetylcholinesterase Activity Assay Protocol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, S.; Iftikhar, F.; Ullah, F.; Sadiq, A.; Rashid, U. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg. Chem. 2016, 69, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Auld, D.S.; Kornecook, T.J.; Bastianetto, S.; Quirion, R. Alzheimer’s disease and the basal forebrain cholinergic system: Relations to β-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 2002, 68, 209–245. [Google Scholar] [CrossRef]
- Adams, R.L.; Craig, P.L.; Parsons, O.A. Neuropsychology of dementia. Neurol. Clin. 1986, 4, 387–404. [Google Scholar] [CrossRef]
- Giacobini, E. Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochem. Res. 2003, 28, 515. [Google Scholar] [CrossRef] [PubMed]
- Holzgrabe, U.; Kapková, P.; Alptüzün, V.; Scheiber, J.; Kugelmann, E. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin. Ther. Targets 2007, 11, 161. [Google Scholar] [CrossRef]
- Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993, 41, 31–91. [Google Scholar] [CrossRef]
- Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 2014, 13, 1432–1439. [Google Scholar] [CrossRef]
- Rahim, F.; Ullah, H.; Taha, M.; Wadood, A.; Javed, M.T.; Rehman, W.; Nawaz, M.; Ashraf, M.; Ali, M.; Sajid, M.; et al. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorg. Chem. 2016, 68, 30–40. [Google Scholar] [CrossRef]
- Wang, J.; Timchalk, C.; Lin, Y. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: An exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol. 2008, 42, 2688. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Fayyaz, F.; Hussain, A.; Rahim, F.; Rehman, A.; Wadood, A.; Khan, K.M. New oxadiazole bearing thiosemicarbazide analogues: Synthesis, anti-alzheimer inhibitory potential and their molecular docking study. Chem. Data Collect. 2022, 41, 100915. [Google Scholar] [CrossRef]
- Small, G.W.; Rabins, P.V.; Barry, P.P.; Buckholts, N.S.; Dekosky, S.T.; Ferris, S.H. Diagnosis and treatment of Alzheimer disease and related disorders. J. Am. Med. Assoc. 1997, 278, 1363–1371. [Google Scholar] [CrossRef]
- Spasov, A.; Yozhitsa, I.N.; Bugaeva, L.I.; Anisimova, V.A. Benzimidazole derivatives: Spectrum of pharmacological activity and toxicological properties (a review). Pharm. Chem. J. 1999, 33, 232–243. [Google Scholar] [CrossRef]
- Patil, A.; Ganguly, S.; Surana, S. A systematic review of benzimidazole derivatives as an antiulcer agent. Rasayan. J. Chem. 2008, 1, 447–460. [Google Scholar]
- Dubey, K.; Sanyal, P.K. Benzimidazole sinawormyworld. Vet Scan| Online Vet. Med. J. 2010, 5, 63. [Google Scholar]
- Boiani, M.; González, M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem. 2005, 5, 409–424. [Google Scholar] [CrossRef]
- Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A medicinally important heterocyclic moiety. Med. Chem. Res. 2012, 21, 269–283. [Google Scholar] [CrossRef]
- VishnuJi, R.; Arun, S.; Mahendra, N.; Ramendra, P. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three-to-Five Membered Heterocycles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–478. [Google Scholar]
- Bansal, Y.; Silakari, O.; Lapinsky, D.J.; Kusayanagi, T.; Tsukuda, S.; Shimura, S.; Manita, D.; Iwakiri, K.; Kamisuki, S.; Takakusagi, Y.; et al. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012, 20, 6199–6207. [Google Scholar] [CrossRef]
- Parekh, N.M.; Juddhawala, K.V.; Rawal, B.M. Antimicrobial activity of thiazolyl benzenesulfonamide-condensed 2, 4-thiazolidinediones derivatives. Med. Chem. Res. 2013, 22, 2737–2745. [Google Scholar] [CrossRef]
- Rostom, S.A.; El-Ashmawy, I.M.; AbdElRazik, H.A.; Badr, M.H.; Ashour, H.M. Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents. Bioorg. Med. Chem. 2009, 17, 882–895. [Google Scholar] [CrossRef]
- Haroun, M.; Tratrat, C.; Tsolaki, E.; Geronikaki, A. Thiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Comb. Chem. High Throughput Screen 2016, 19, 51–57. [Google Scholar] [CrossRef]
- Luzina, E.L.; Popov, A.V. Synthesis and anticancer activity of N-bis (trifluoromethyl) alkyl-N′-thiazolyl and N-bis (trifluoromethyl) alkyl-N′-benzothiazolyl ureas. Eur. J. Med. Chem. 2009, 44, 4944–4953. [Google Scholar] [CrossRef] [PubMed]
- Zablotskaya, A.; Segal, I.; Germane, S.; Shestakova, I.; Domracheva, I.; Nesterova, A.; Geronikaki, A.; Lukevics, E. Silyl modification of biologically active compounds. 8. Trimethylsilyl ethers of hydroxyl-containing thiazole derivatives. Chem. Heterocycl. Compd. 2002, 38, 859–866. [Google Scholar] [CrossRef]
- Britschgi, M.; Greyerz, S.; Burkhart, C.; Pichler, W.J. Molecular aspects of drug recognition by specific T cells. Curr. Drug Targets 2003, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Turan-Zitouni, G.; Chevallet, P.; Kilic, F.S.; Erol, K. Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur. J. Med. Chem. 2000, 35, 635–641. [Google Scholar] [CrossRef]
- Mohsen, U.A.; Kaplancikli, Z.A.; Ozkay, Y.; Yurttas, E.L. Synthesis and evaluation of anti-acetylcholinesterase activity of some benzothiazole based new piperazine-dithiocarbamate derivatives. Drug Res. 2015, 65, 176–183. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, F.C.; Li, Q.X.; Liu, W.W.; Liu, X.J.; Cao, Z.L.; Shi, D.H. Synthesis and biological evaluation of novel C1-glycosyl thiazole derivatives as acetylcholinesterase inhibitors. J. Chem. Res. 2016, 40, 545–548. [Google Scholar] [CrossRef]
- Wang, Y.X.; Liu, S.H.; Shao, Z.B.; Cao, L.G.; Jiang, K.J.; Lu, X.; Wang, L.; Liu, W.W.; Shi, D.H.; Cao, Z.L. Synthesis and anti-acetylcholinesterase activities of novel glycosyl coumarylthiazole derivatives. J. Chem. Res. 2021, 2021, 359–364. [Google Scholar] [CrossRef]
- Ibrar, A.; Zaib, S.; Khan, I.; Jabeen, F.; Iqbal, J.; Saeed, A. Facile and Expedient Accessto Bis-Coumarin–Iminothiazole Hybridsby Molecular Hybridization Approach: Synthesis, Molecular Modelling and Assessment of Alkaline Phosphatase Inhibition, Anticancer and Antileishmanial Potential. RSC Adv. 2015, 5, 89919–89931. [Google Scholar] [CrossRef]
- Haroon, M.; Khalid, M.; Shahzadi, K.; Akhtar, T.; Saba, S.; Rafique, J.; Ali, S.; Irfan, M.; Alam, M.M.; Imran, M. Alkyl 2-(2-(arylidene) alkylhydrazinyl) thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies. J. Mole. Stru. 2021, 1245, 131063. [Google Scholar] [CrossRef]
- Chhabria, M.; Patel, S.; Modi, P.; Brahmkshatriya, P. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem. 2016, 16, 2841–2862. [Google Scholar] [CrossRef]
- Taha, M.; Ullah, H.; AlMuqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Ali, M.; Perveen, S. Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies. Eur. J. Med. Chem. 2018, 143, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Sultan, S.; Nuzar, H.A.; Rahim, F.; Imran, S.; Ismail, N.H.; Naz, H.; Ullah, H. Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent β-glucuronidase inhibitors. Bioorg. Med. Chem. 2016, 24, 3696–3704. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Javid, M.T.; Imran, S.; Selvaraj, M.; Chigurupati, S.; Ullah, H.; Rahim, F.; Khan, F.; Mohammad, J.I.; Khan, K.M. Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorg. Chem. 2017, 74, 179–186. [Google Scholar] [CrossRef]
- Rahim, F.; Ullah, K.; Ullah, H.; Wadood, A.; Taha, M.; Rehman, A.; Din, I.U.; Ashraf, M.; Shaukat, A.; Rehman, W.; et al. Triazinoindole analogs as potent inhibitors of α-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorg. Chem. 2015, 58, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem. 2017, 74, 30–40. [Google Scholar] [CrossRef]
- Rahim, F.; Ullah, H.; Javid, M.T.; Wadood, A.; Taha, M.; Ashraf, M.; Shaukat, A.; Junaid, M.; Hussain, S.; Rehman, W.; et al. Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorg. Chem. 2015, 62, 15–21. [Google Scholar] [CrossRef]
- Rahim, F.; Malik, F.; Ullah, H.; Wadood, A.; Khan, F.; Javid, M.T.; Taha, M.; Rehman, W.; Rehman, A.U.; Khan, K.M. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorg. Chem. 2015, 60, 42–48. [Google Scholar] [CrossRef]
- Rahim, F.; Ali, M.; Ullah, S.; Rashid, U.; Ullah, H.; Taha, M.; Javed, M.T.; Rehman, W.; Abid, O.U.R.; Khan, A.A.; et al. Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies. Chin. Chem. Lett. 2016, 27, 693–697. [Google Scholar] [CrossRef]
- Rahim, F.; Zaman, K.; Ullah, H.; Taha, M.; Wadood, A.; Javed, M.T.; Rehman, W.; Ashraf, M.; Uddin, R.; Uddin, I.; et al. Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorg. Chem. 2015, 63, 123–131. [Google Scholar] [CrossRef]
- Taha, M.; Ullah, H.; AlMuqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Javid, M.T.; Ali, M.; Khan, K.M. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorg. Med. Chem. 2018, 26, 152–160. [Google Scholar] [CrossRef]
- Adalat, B.; Rahim, F.; Taha, M.; Alshamrani, F.J.; Anouar, E.H.; Uddin, N.; Shah, S.A.A.; Ali, Z.; Zakaria, Z.A. Synthesis of Benzimidazole–Based Analogs as Anti Alzheimer’s Disease Compounds and Their Molecular Docking Studies. Molecules 2020, 25, 4828. [Google Scholar] [CrossRef] [PubMed]
- Rahim, F.; Javed, M.T.; Ullah, H.; Wadood, A.; Taha, M.; Ashraf, M.; Khan, M.A.; Khan, F.; Mirza, S.; Khan, K.M. Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorg Chem. 2015, 62, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Mekky, E.M.; Sanad, S.M.; El-Idreesy, T.T. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors. Synth. Commun. 2021, 51, 3332–3344. [Google Scholar] [CrossRef]
- Hemaida, A.Y.; Hassan, G.S.; Maarouf, A.R.; Joubert, J.; El-Emam, A.A. Synthesis and Biological Evaluation of Thiazole-Based Derivatives as Potential Acetylcholinesterase Inhibitors. ACS Omega 2021, 6, 19202–19211. [Google Scholar] [CrossRef] [PubMed]
- Rahim, F.; Zaman, K.; Taha, M.; Ullah, H.; Ghufran, M.; Wadood, A.; Rehman, W.; Uddin, N.; Shah, S.A.A.; Sajid, M.; et al. Synthesis, invitroalpha-glucosidaseinhibitorypotentialofbenzimidazolebearingbis-Schiff bases and their molecular docking study. Bioorg. Chem. 2020, 94, 103394. [Google Scholar] [CrossRef]
- Cacabelos, R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr. Dis. Treat. 2007, 3, 303–333. [Google Scholar]
- Wadood, A.; Shareef, A.; Rehman, A.U.; Muhammad, S.; Khurshid, B.; Khan, R.S.; Shams, S.; Afridi, S.G. In silico drug designing for ala438 deleted ribosomal protein S1 (RpsA) on the basis of the active compound Zrl 15. ACS Omega 2022, 7, 397–408. [Google Scholar] [CrossRef]
- Rehman, A.U.; Zhen, G.; Zhong, B.; Ni, D.; Li, J.; Nasir, A.; Gabr, M.T.; Rafiq, H.; Wadood, A.; Lu, S.; et al. Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Phys. Chem. Chem. Phys. 2021, 23, 12204–12215. [Google Scholar] [CrossRef]
- Chigurupati, S.; Selvaraj, M.; Mani, V.; Selvarajan, K.K.; Mohammad, J.I.; Kaveti, B.; Bera, H.; Palanimuthu, V.R.; Teh, L.K.; Salleh, M.Z. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chem. 2016, 67, 9–17. [Google Scholar] [CrossRef]
- Chigurupati, S.; Selvaraj, M.; Mani, V.; Mohammad, J.I.; Selvarajan, K.K.; Akhtar, S.S.; Marikannan, M.; Raj, S.; Teh, L.K.; Salleh, M.Z. Synthesis of azomethines derived from cinnamaldehyde and vanillin: In vitro aetylcholinesterase inhibitory, antioxidant and insilico molecular docking studies. Med. Chem. Res. 2018, 27, 807–816. [Google Scholar] [CrossRef]
S.NO | Ring B | Ring C | IC50AChE | IC50BuChE | Selectivity Index |
---|---|---|---|---|---|
1 | 4.60 ± 0.10 | 7.60 ± 0.10 | 1.65 | ||
2 | 2.30 ± 0.10 | 3.20 ± 0.10 | 0.9 | ||
3 | 0.80 ± 0.10 | 1.80 ± 0.10 | 2.25 | ||
4 | 3.50 ± 0.10 | 5.30 ± 0.10 | 1.51 | ||
5 | 8.60 ± 0.20 | 10.70 ± 0.20 | 1.24 | ||
6 | 0.70 ± 0.05 | 1.40 ± 0.05 | 2.0 | ||
7 | 2.90 ± 0.10 | 3.50 ± 0.10 | 1.21 | ||
8 | 6.30 ± 0.10 | 7.90 ± 0.10 | 1.25 | ||
9 | 1.30 ± 0.10 | 3.20 ± 0.10 | 2.46 | ||
10 | N.A. | N.A. | - | ||
11 | 0.40 ± 0.050 | 1.10 ± 0.10 | 2.75 | ||
12 | 1.40 ± 0.10 | 2.10 ± 0.10 | 1.5 | ||
13 | 3.20 ± 0.10 | 5.10 ± 0.10 | 1.59 | ||
14 | 3.10 ± 0.10 | 4.20 ± 0.10 | 1.35 | ||
15 | 0.30 ± 0.050 | 0.70 ± 0.050 | 2.33 | ||
16 | 0.20 ± 0.050 | 0.50 ± 0.050 | 2.5 | ||
17 | 1.10 ± 0.050 | 1.80 ± 0.10 | 1.64 | ||
18 | 0.70 ± 0.050 | 1.20 ± 0.10 | 1.71 | ||
19 | 1.40 ± 0.10 | 1.30 ± 0.10 | 0.92 | ||
20 | 1.20 ± 0.10 | 1.90 ± 0.10 | 1.58 | ||
21 | 0.10 ± 0.05 | 0.20 ± 0.05 | 2.0 | ||
22 | 0.40 ± 0.20 | 0.70 ± 0.10 | 1.75 | ||
23 | 4.70 ± 0.10 | 6.70 ± 0.10 | 1.43 | ||
24 | 11.10 ± 0.30 | 14.20 ± 0.10 | 1.28 | ||
Standard drug Donepezil | 2.16 ± 0.12 µM | 4.5 ± 0.11 µM | 2.08 |
Active Derivatives | Name of Enzyme | Free Binding Energy (kcal/mol) | Number of HBs | Number of Closest Residues | Interacting Residues |
---|---|---|---|---|---|
21 | AChE | −11.23 | 1 | 23 | Phe330, Phe331, Tyr334, Asp72, Trp84, Tyr121 and Trp279 |
BuChE | −10.88 | 1 | 22 | Tyr332, Phe329, Ala328, Trp82, Asp70, Gly116, Gly117, Trp231, Ser287 and Leu286 | |
16 | AChE | −10.77 | 1 | 21 | Trp84, Glu199, Tyr121, Trp279, Asp285, Tyr334 and Asp72 |
BuChE | −9.89 | 1 | 24 | Trp231, Leu286, Pro285, Phe329, Asp70, Ile69, Ala328 and Trp82 | |
15 | AChE | −9.33 | 0 | 20 | Trp70, Trp84, Glu199, Phe331, Tyr334, Trp279 and Tyr70 |
BuChE | −8.72 | 1 | 24 | Thr120, Asp70, Trp82, His438, Phe329, Trp231, Leu286 and Gly117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, R.; Ullah, H.; Rahim, F.; Sarfraz, M.; Taha, M.; Iqbal, R.; Rehman, W.; Khan, S.; Shah, S.A.A.; Hyder, S.; et al. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules 2022, 27, 6087. https://doi.org/10.3390/molecules27186087
Hussain R, Ullah H, Rahim F, Sarfraz M, Taha M, Iqbal R, Rehman W, Khan S, Shah SAA, Hyder S, et al. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules. 2022; 27(18):6087. https://doi.org/10.3390/molecules27186087
Chicago/Turabian StyleHussain, Rafaqat, Hayat Ullah, Fazal Rahim, Maliha Sarfraz, Muhammad Taha, Rashid Iqbal, Wajid Rehman, Shoaib Khan, Syed Adnan Ali Shah, Sajjad Hyder, and et al. 2022. "Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives" Molecules 27, no. 18: 6087. https://doi.org/10.3390/molecules27186087
APA StyleHussain, R., Ullah, H., Rahim, F., Sarfraz, M., Taha, M., Iqbal, R., Rehman, W., Khan, S., Shah, S. A. A., Hyder, S., Alhomrani, M., Alamri, A. S., Abdulaziz, O., & Abdelaziz, M. A. (2022). Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules, 27(18), 6087. https://doi.org/10.3390/molecules27186087