Triel Bond Formed by Malondialdehyde and Its Influence on the Intramolecular H-Bond and Proton Transfer
Abstract
:1. Introduction
2. Results
2.1. Coplanar Triel-Bonded Complexes
2.2. π–π Parallel Structures
2.3. Proton Transfer
2.4. Substitution Effect
3. Discussion
4. Conclusions
5. Theoretical Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Marnett, L.J. Lipid peroxidation—DNA damage by malondialdehyde. Mutat. Res.-Fund. Mol. Mech. 1999, 424, 83–95. [Google Scholar] [CrossRef]
- Islayem, D.; FakihF, B.; Lee, S. Comparison of colorimetric methods to detect malondialdehyde, A biomarker of reactive oxygen species. ChemistrySelect 2022, 7, e202103627. [Google Scholar] [CrossRef]
- Auxilia, A.M.; Caldiroli, A.; Capuzzi, E.; Clerici, M.; Ossola, P.; Buoli, M. Is malondialdehyde a reliable biomarker for bipolar disorder? Eur. Neuropsychopharm. 2021, 53, S297–S298. [Google Scholar] [CrossRef]
- Mohideen, K.; Sudhakar, U.; Balakrishnan, T.; Almasri, M.A.; Al-Ahmari, M.M.; Dira, H.S.A.; Suhluli, M.; Dubey, A.; Mujoo, S.; Khurshid, Z.; et al. Malondialdehyde, an oxidative stress marker in oral squamous cell carcinoma—A systematic review and meta-analysis. Curr. Issues Mol. Biol. 2021, 43, 1019–1035. [Google Scholar] [CrossRef]
- Pitsevich, G.A.; Malevich, A.E.; Kozlovskaya, E.N.; Yu, I.; Pogorelov, V.E.; Sablinskas, V.; Balevicius, V. Theoretical study of the C-H/O-H stretching vibrations in malonaldehyde. Spectrochim. Acta A 2015, 145, 384–393. [Google Scholar] [CrossRef]
- Lin, C.; Kumar, M.; Finney, B.A.; Francisco, J.S. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues. J. Chem. Phys. 2017, 147, 124309. [Google Scholar]
- Hargis, J.C.; Evangelista, F.A.; Ingels, J.B.; Schaefer III, H.F. Short intramolecular hydrogen bonds: Derivatives of malonaldehyde with symmetrical substituents. J. Am. Chem. Soc. 2008, 130, 17471–17478. [Google Scholar] [CrossRef]
- Gutiérrez-Quintanilla, A.; Chevalier, M.; Platakyte, R.; Ceponkus, J.; Rojas-Lorenzo, G.; Crépin, C. 2-Chloromalonaldehyde, A model system of resonance-assisted hydrogen bonding: Vibrational investigation. Phys. Chem. Chem. Phys. 2018, 20, 12888–12897. [Google Scholar] [CrossRef]
- Gutiérrez-Quintanilla, A.; Chevalier, M.; Platakyte, R.; Ceponkus, J.; Crépin, C. Selective photoisomerisation of 2-chloromalonaldehyde. J. Chem. Phys. 2019, 150, 034305. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, J.; Truhlar, D.G. Ultraviolet absorption spectrum of malonaldehyde in water is dominated by solvent-stabilized conformations. J. Am. Chem. Soc. 2015, 137, 8026–8029. [Google Scholar] [CrossRef]
- Terranova, Z.L.; Corcelli, S.A. Monitoring intramolecular proton transfer with two-dimensional infrared spectroscopy: A computational prediction. J. Phys. Chem. Lett. 2012, 3, 1842–1846. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Ren, Y. Primary and secondary isotope effect on tunnelling in malonaldehyde using a quantum mechanical scheme. Mol. Phys. 2017, 115, 1700–1707. [Google Scholar] [CrossRef]
- Huang, J.; Buchowiecki, M.; Nagy, T.; Vaníček, J.; Meuwly, M. Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations. Phys. Chem. Chem. Phys. 2014, 16, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Douhal, A.; Lahmani, F.; Zewail, A.H. Proton-transfer reaction dynamics. Chem. Phys. 1996, 207, 477–498. [Google Scholar] [CrossRef]
- Mó, O.; Yáne, M.; Alkorta, I.; Elguero, J. Modulating the strength of hydrogen bonds through beryllium bonds. J. Chem. Theory Comput. 2012, 8, 2293–2300. [Google Scholar] [CrossRef]
- Wei, Y.X.; Li, Q.Z.; Scheiner, S. The π-tetrel bond and its influence on hydrogen bonding and proton transfer. ChemPhysChem 2018, 19, 736–743. [Google Scholar] [CrossRef]
- Grabowski, S.J. Boron and other triel Lewis acid centers: From hypovalency to hypervalency. ChemPhysChem 2014, 15, 2985–2993. [Google Scholar] [CrossRef]
- Buchberger, A.R.; Danforth, S.J.; Bloomgren, K.M.; Rohde, J.A.; Smith, E.L.; Gardener, C.C.; Phillips, J.A. Condensed-phase effects on the structural properties of FCH2CN–BF3 and ClCH2CN–BF3: A matrix-isolation and computational study. J. Phys. Chem. B 2013, 117, 11687–11696. [Google Scholar] [CrossRef]
- Bhunya, S.; Malakar, T.; Ganguly, G.; Paul, A. Combining protons and hydrides by homogeneous catalysis for controlling the release of hydrogen from ammonia–borane: Present status and challenges. ACS Catal. 2016, 6, 7907–7934. [Google Scholar] [CrossRef]
- Vyboishchikov, S.F.; Krapp, A.; Frenking, G. Two complementary molecular energy decomposition schemes: The Mayer and Ziegler–Rauk methods in comparison. J. Chem. Phys. 2008, 129, 144111. [Google Scholar] [CrossRef]
- Ishita, B.; Sourav, B.; Ankan, P. Frustrated Lewis acid–base-pair-catalyzed amine-borane dehydrogenation. Inorg. Chem. 2020, 59, 1046–1056. [Google Scholar]
- Parks, D.J.; Blackwell, J.M.; Piers, W.E. Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions. J. Org. Chem. 2000, 65, 3090–3098. [Google Scholar] [CrossRef]
- Hamilton, C.W.; Baker, R.T.; Staubitz, A.; Manners, I. B–N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Diaz, D.B.; Yudin, A.K. The versatility of boron in biological target engagement. Nat. Chem. 2017, 9, 731–742. [Google Scholar] [CrossRef]
- Grabowski, S.J. π-Hole bonds: Boron and aluminum Lewis acid centers. ChemPhysChem 2015, 16, 1470–1479. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. On the versatility of BH2X (X = F, Cl, Br, and I) compounds as halogen-, hydrogen-, and triel-bond donors: An ab initio study. ChemPhysChem 2016, 17, 3181–3186. [Google Scholar] [CrossRef]
- Mohajeri, A.; Eskandari, K.; Safaee, S.A. Endohedral pnicogen and triel bonds in doped C60 fullerenes. New J. Chem. 2017, 41, 10619–10626. [Google Scholar] [CrossRef]
- Michalczyk, M.; Zierkiewicz, W.; Scheiner, S. Triel-bonded complexes between TrR3 (Tr = B, Al, Ga; R = H, F, Cl, Br, CH3) and Pyrazine. ChemPhysChem 2018, 19, 3122–3133. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Bifurcated triel bonds—hydrides and halides of 1,2-bis(dichloroboryl) benzene and 1,8-bis(dichloroboryl) naphthalene. Crystals 2019, 9, 503. [Google Scholar] [CrossRef]
- Grabowski, S.J. Triel bond and coordination of triel centres–Comparison with hydrogen bond interaction. Chem. Rev. 2020, 407, 213171. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, B.; Li, Q.; Scheiner, S. Weak σ-hole triel bond between C5H5Tr (Tr = B, Al, Ga) and haloethyne: Substituent and cooperativity effects. ChemPhysChem 2021, 22, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Triel bonds, π-hole-π-electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene. Molecules 2015, 20, 11297–11316. [Google Scholar] [CrossRef] [PubMed]
- Esrafili, M.D.; Mohammadian-Sabet, F. Theoretical insights into nature of π-hole interactions between triel centers (B and Al) and radical methyl as a potential electron donor: Do single-electron triel bonds exist? Struct. Chem. 2016, 27, 1157–1164. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wei, Y.X.; Li, W.Z.; Cheng, J.B.; Li, Q.Z. Triel–hydride triel bond between ZX3 (Z = B and Al; X = H and Me) and THMe3 (T = Si, Ge and Sn). Appl. Organomet. Chem. 2018, 32, e4367. [Google Scholar] [CrossRef]
- Chi, Z.Q.; Dong, W.B.; Li, Q.Z.; Yang, X.; Scheiner, S.; Liu, S.F. Carbene triel bonds between TrR3 (Tr = B, Al) and N-heterocyclic carbenes. Int. J. Quantum Chem. 2019, 119, e25867. [Google Scholar] [CrossRef]
- Chi, Z.Q.; Li, Q.Z.; Li, H.B. Comparison of triel bonds with different chalcogen electron donors: Its dependence on triel donor and methyl substitution. Int. J. Quantum Chem. 2020, 120, e26046. [Google Scholar] [CrossRef]
- Fiacco, D.L.; Leopold, K.R. Partially bound systems as sensitive probes of microsolvation: A microwave and ab initio study of HCN∙∙∙HCN− BF3. J. Phys. Chem. A 2003, 107, 2808–2814. [Google Scholar] [CrossRef]
- Lipkowski, P.; Grabowski, S.J.; Robinson, T.L.; Leszczynski, J. Properties of the C−H∙∙∙H dihydrogen bond: An ab initio and topological analysis. J. Phys. Chem. A 2004, 108, 10865–10872. [Google Scholar] [CrossRef]
- Silva, N.J.; Machado, F.B.C.; Lischka, H.; Aquino, A.J.A. π–π stacking between polyaromatic hydrocarbon sheets beyond dispersion interactions. Phys. Chem. Chem. Phys. 2016, 18, 22300–22310. [Google Scholar] [CrossRef]
- Lommerse, J.P.M.; Price, S.L.; Taylor, R. Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups. J. Comput. Chem. 1997, 18, 757–774. [Google Scholar] [CrossRef]
- Grabowski, S.J. Triel bonds-complexes of boron and aluminum trihalides and trihydrides with benzene. Struct. Chem. 2017, 28, 1163–1171. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, RevisionD.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Bulat, F.A.; Toro-Labbé, A.; Brinck, T.; Murray, J.S.; Politzer, P. Quantitative analysis of molecular surfaces: Areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010, 16, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Su, P.; Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef] [Green Version]
Eint | Eb | DE | |
---|---|---|---|
MDA-BH3-a | −19.90 | −10.83 | 9.07 |
MDA-BF3-a | −7.49 | −5.00 | 2.49 |
MDA-BCl3-a | −37.36 | −12.75 | 24.61 |
MDA-BBr3-a | −38.10 | −13.94 | 24.16 |
MDA-AlH3-a | −20.98 | −16.62 | 4.36 |
MDA-AlF3-a | −41.59 | −32.78 | 8.81 |
MDA-AlCl3-a | −41.16 | −31.83 | 9.33 |
MDA-AlBr3-a | −39.86 | −30.92 | 8.94 |
MDA-BH3-b | −28.65 | −17.60 | 11.05 |
MDA-BF3-b | −29.27 | −10.43 | 18.84 |
MDA-BCl3-b | −37.36 | −12.75 | 24.61 |
MDA-BBr3-b | −38.10 | −13.94 | 24.16 |
MDA-AlH3-b | −26.97 | −22.32 | 4.65 |
MDA-AlF3-b | −41.59 | −32.79 | 8.80 |
MDA-AlCl3-b | −41.16 | −31.83 | 9.33 |
MDA-AlBr3-b | −39.86 | −30.92 | 8.94 |
MDA-BH3-c | −18.31 | −9.68 | 8.63 |
MDA-BF3-c | −2.79 | −2.54 | 0.25 |
MDA-BCl3-c | −4.12 | −4.00 | 0.12 |
MDA-BBr3-c | −4.40 | −4.20 | 0.20 |
MDA-AlH3-c | −11.97 | −9.61 | 2.36 |
MDA-AlF3-c | −21.26 | −14.29 | 6.97 |
MDA-AlCl3-c | −23.55 | −14.73 | 8.82 |
MDA-AlBr3-c | −23.12 | −14.34 | 8.78 |
ρ | ∇2ρ | H | G | V | ׀V׀/G | |
---|---|---|---|---|---|---|
MDA-BH3-a | 0.0638 | 0.4829 | −0.0210 | 0.1037 | −0.1359 | 1.3105 |
MDA-BF3-a | 0.0249 | 0.0732 | −0.0028 | 0.0212 | −0.0240 | 1.1321 |
MDA-BCl3-a | 0.1100 | 0.5153 | −0.0652 | 0.1940 | −0.2591 | 1.3356 |
MDA-BBr3-a | 0.1175 | 0.5575 | −0.0716 | 0.2110 | −0.2827 | 1.3398 |
MDA-AlH3-a | 0.0382 | 0.2914 | 0.0086 | 0.0643 | −0.0558 | 0.8678 |
MDA-AlF3-a | 0.0575 | 0.4536 | 0.0072 | 0.1062 | −0.0989 | 0.9313 |
MDA-AlCl3-a | 0.0593 | 0.4638 | 0.0064 | 0.1095 | −0.1031 | 0.9416 |
MDA-AlBr3-a | 0.0600 | 0.4689 | 0.0062 | 0.1110 | −0.1048 | 0.9441 |
MDA-BH3-b | 0.0788 | 0.5965 | −0.0280 | 0.1771 | −0.2051 | 1.1581 |
MDA-BF3-b | 0.0793 | 0.3505 | −0.0416 | 0.1292 | −0.1708 | 1.3220 |
MDA-BCl3-b | 0.1100 | 0.5153 | −0.0652 | 0.1940 | −0.2591 | 1.3356 |
MDA-BBr3-b | 0.1175 | 0.5575 | −0.0716 | 0.2110 | −0.2827 | 1.3398 |
MDA-AlH3-b | 0.0447 | 0.3366 | 0.0079 | 0.0762 | −0.0683 | 0.8963 |
MDA-AlF3-b | 0.0575 | 0.4536 | 0.0072 | 0.1062 | −0.0989 | 0.9313 |
MDA-AlCl3-b | 0.0593 | 0.4638 | 0.0064 | 0.1095 | −0.1031 | 0.9416 |
MDA-AlBr3-b | 0.0600 | 0.4689 | 0.0062 | 0.1110 | −0.1048 | 0.9441 |
MDA-BH3-c | 0.0600 | 0.0340 | −0.0377 | 0.0472 | −0.0851 | 1.8030 |
MDA-BF3-c | 0.0103 | 0.0278 | 0.0007 | 0.0064 | −0.0058 | 0.9063 |
MDA-BCl3-c | 0.0085 | 0.0224 | 0.0008 | 0.0049 | −0.0041 | 0.8367 |
MDA-BBr3-c | 0.0096 | 0.0242 | 0.0007 | 0.0054 | −0.0047 | 0.8704 |
MDA-AlH3-c | 0.0254 | 0.0828 | −0.0023 | 0.0225 | −0.0250 | 1.1111 |
MDA-AlF3-c | 0.0374 | 0.1388 | −0.0048 | 0.0385 | −0.0436 | 1.1325 |
MDA-AlCl3-c | 0.0394 | 0.1335 | −0.0064 | 0.0386 | −0.0453 | 1.1736 |
MDA-AlBr3-c | 0.0404 | 0.1343 | −0.0069 | 0.0402 | −0.0471 | 1.1716 |
R1 | ΔR1 | R2 | ΔR2 | |
---|---|---|---|---|
MDA-BH3-a | 1.539 | −0.106 | 1.023 | 0.022 |
MDA-BF3-a | 1.579 | −0.066 | 1.013 | 0.012 |
MDA-BCl3-a | 0.988 | −0.657 | 1.736 | 0.735 |
MDA-BBr3-a | 0.988 | −0.657 | 1.732 | 0.731 |
MDA-AlH3-a | 1.476 | −0.169 | 1.040 | 0.039 |
MDA-AlF3-a | 0.988 | −0.657 | 1.732 | 0.731 |
MDA-AlCl3-a | 0.988 | −0.657 | 1.744 | 0.743 |
MDA-AlBr3-a | 0.988 | −0.657 | 1.742 | 0.741 |
MDA-BH3-b | 1.736 | 0.091 | 0.988 | −0.013 |
MDA-BF3-b | 1.734 | 0.089 | 0.988 | −0.013 |
MDA-BCl3-b | 1.736 | 0.091 | 0.988 | −0.013 |
MDA-BBr3-b | 1.732 | 0.087 | 0.989 | −0.012 |
MDA-AlH3-b | 1.722 | 0.077 | 0.990 | −0.011 |
MDA-AlF3-b | 1.732 | 0.087 | 0.988 | −0.013 |
MDA-AlCl3-b | 1.744 | 0.099 | 0.988 | −0.013 |
MDA-AlBr3-b | 1.742 | 0.097 | 0.988 | −0.013 |
MDA-BH3-c | 1.646 | 0.001 | 1.005 | 0.004 |
MDA-BF3-c | 1.646 | 0.001 | 1.002 | 0.001 |
MDA-BCl3-c | 1.642 | −0.003 | 1.002 | 0.001 |
MDA-BBr3-c | 1.640 | −0.005 | 1.003 | 0.002 |
MDA-AlH3-c | 1.639 | −0.006 | 1.005 | 0.004 |
MDA-AlF3-c | 1.609 | −0.036 | 1.012 | 0.011 |
MDA-AlCl3-c | 1.594 | −0.051 | 1.015 | 0.014 |
MDA-AlBr3-c | 1.593 | −0.052 | 1.016 | 0.015 |
BH2-MDA-BH3-a | 0.992 | −0.653 | 1.700 | 0.699 |
BH2-MDA-BF3-a | 1.525 | −0.120 | 1.027 | 0.026 |
BH2-MDA-AlH3-a | 0.994 | −0.651 | 1.692 | 0.691 |
H···O(2) | O(1)-H | |||||
---|---|---|---|---|---|---|
ρ | ∇2ρ | H | ρ | ∇2ρ | H | |
MDA | 0.0533 | 0.1352 | −0.0131 | 0.3220 | −2.5486 | −0.6945 |
MDA-BH3-a | 0.0690 | 0.1369 | −0.0241 | 0.2941 | −2.2981 | −0.6328 |
MDA-BF3-a | 0.0626 | 0.1380 | −0.0193 | 0.3058 | −2.4059 | −0.6595 |
MDA-BCl3-a | 0.3364 | −2.7220 | −0.7339 | 0.0405 | 0.1366 | −0.0044 |
MDA-BBr3-a | 0.3355 | −2.7156 | −0.7320 | 0.0409 | 0.1382 | −0.0045 |
MDA-AlH3-a | 0.0810 | 0.1237 | −0.0352 | 0.2766 | −2.0763 | −0.5819 |
MDA-AlF3-a | 0.3368 | −2.7123 | −0.7326 | 0.0416 | 0.1338 | −0.0054 |
MDA-AlCl3-a | 0.3375 | −2.7200 | −0.7342 | 0.0404 | 0.1323 | −0.0048 |
MDA-AlBr3-a | 0.3373 | −2.7182 | −0.7337 | 0.0406 | 0.1329 | −0.0048 |
MDA-BH3-b | 0.0413 | 0.1325 | −0.0053 | 0.3374 | −2.7145 | −0.7336 |
MDA-BF3-b | 0.0412 | 0.1339 | −0.0051 | 0.3372 | −2.7180 | −0.7341 |
MDA-BCl3-b | 0.0405 | 0.1366 | −0.0044 | 0.3364 | −2.7220 | −0.7339 |
MDA-BBr3-b | 0.0409 | 0.1382 | −0.0045 | 0.3355 | −2.7156 | −0.7320 |
MDA-AlH3-b | 0.0429 | 0.1334 | −0.0063 | 0.3353 | −2.6940 | −0.7286 |
MDA-AlF3-b | 0.0416 | 0.1338 | −0.0054 | 0.3368 | −2.7123 | −0.7326 |
MDA-AlCl3-b | 0.0404 | 0.1323 | −0.0048 | 0.3375 | −2.7200 | −0.7342 |
MDA-AlBr3-b | 0.0406 | 0.1329 | −0.0048 | 0.3373 | −2.7182 | −0.7337 |
MDA-BH3-c | 0.0531 | 0.1325 | −0.0131 | 0.3176 | −2.5245 | −0.6866 |
MDA-BF3-c | 0.0531 | 0.1350 | −0.0129 | 0.3213 | −2.5464 | −0.6935 |
MDA-BCl3-c | 0.0537 | 0.1353 | −0.0133 | 0.3210 | −2.5393 | −0.6921 |
MDA-BBr3-c | 0.0539 | 0.1353 | −0.0135 | 0.3207 | −2.5358 | −0.6913 |
MDA-AlH3-c | 0.0540 | 0.1342 | −0.0135 | 0.3170 | −2.5186 | −0.6854 |
MDA-AlF3-c | 0.0581 | 0.1350 | −0.0163 | 0.3096 | −2.4522 | −0.6686 |
MDA-AlCl3-c | 0.0603 | 0.1351 | −0.0179 | 0.3059 | −2.4130 | −0.6590 |
MDA-AlBr3-c | 0.0605 | 0.1349 | −0.0181 | 0.3053 | −2.4073 | −0.6575 |
BH2-MDA-BH3-a | 0.3319 | −2.6740 | −0.7228 | 0.0452 | 0.1362 | −0.0752 |
BH2-MDA-BF3-a | 0.0719 | 0.1342 | −0.0267 | 0.2920 | −2.2490 | −0.6220 |
BH2-MDA-AlH3-a | 0.3303 | −2.6560 | −0.7185 | 0.0463 | 0.1362 | −0.0083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Yang, S.; Li, Q. Triel Bond Formed by Malondialdehyde and Its Influence on the Intramolecular H-Bond and Proton Transfer. Molecules 2022, 27, 6091. https://doi.org/10.3390/molecules27186091
Wu Q, Yang S, Li Q. Triel Bond Formed by Malondialdehyde and Its Influence on the Intramolecular H-Bond and Proton Transfer. Molecules. 2022; 27(18):6091. https://doi.org/10.3390/molecules27186091
Chicago/Turabian StyleWu, Qiaozhuo, Shubin Yang, and Qingzhong Li. 2022. "Triel Bond Formed by Malondialdehyde and Its Influence on the Intramolecular H-Bond and Proton Transfer" Molecules 27, no. 18: 6091. https://doi.org/10.3390/molecules27186091
APA StyleWu, Q., Yang, S., & Li, Q. (2022). Triel Bond Formed by Malondialdehyde and Its Influence on the Intramolecular H-Bond and Proton Transfer. Molecules, 27(18), 6091. https://doi.org/10.3390/molecules27186091