Coordination Sites for Sodium and Potassium Ions in Nucleophilic Adeninate Contact ion-Pairs: A Molecular-Wide and Electron Density-Based (MOWED) Perspective
Abstract
:1. Introduction
2. Results and Discussion
2.1. Data Obtained Using An Implicit Solvation Model
2.1.1. Optimized Structures and Relative Energies
2.1.2. A Molecular-Wide Approach for Determining the Na+ and K+ Coordination Site(s) in the CIP
2.1.3. The Inter-Ionic Interaction Energy of the CIPs of the Na- and K-Ade Complexes
2.1.4. Influence of CIP Formation on the Intramolecular Interactions of the Adeninate Anion
2.1.5. Change in Net Atomic Charges upon CIP Formation
2.2. Data Obtained Using An Explicit Solvation Model
2.2.1. Relative Energies of M-Ade-(DMSO)4 Systems and M-Ade Complexes in the Systems
2.2.2. Effect of Explicit Solvent Model on the Inter-Ionic Interactions
2.2.3. Strength and Nature of Interactions between DMSO Solvent Molecule and the Na+ and K+ Counter Ions in M-Ade-(DMSO)4 Molecular Systems
2.2.4. Interactions of DMSO Solvent Molecules with the Adeninate Anion in M-Ade-(DMSO)4 Systems
3. Materials and Methods
Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ts’o, P.O.P. Bases, Nucleosides, and Nucleotides. In Basic Principles in Nucleic Acid Chemistry; Ts’o, P.O.P., Ed.; Academic Press: New York, NY, USA, 1974; Volume 1, pp. 453–584. [Google Scholar]
- Ts’o, P.O.P.; Melvin, I.S.; Olson, A.C. Interaction and association of bases and nucleosides in aqueous solutions. J. Am. Chem. Soc. 1963, 85, 1289–1296. [Google Scholar] [CrossRef]
- Riley, D.L.; Walwyn, D.R.; Edlin, C.D. An improved process for the preparation of tenofovir disoproxil fumarate. Org. Process Res. Dev. 2016, 20, 742–750. [Google Scholar] [CrossRef]
- Jones, D.J.; O’Leary, E.M.; O’Sullivan, T.P. An improved synthesis of adefovir and related analogues. Beilstein J. Org. Chem. 2019, 15, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Arimilli, M.N.; Cundy, K.C.; Dougherty, J.P.; Kim, C.U.; Oliyai, R.; Stella, V.J. Antiviral phosphonomethoxy nucleotide analogs having increased oral bioavailability. U.S. Patent 6,043,230, 19 May 1999. [Google Scholar]
- Naesens, L.; Bischofberger, N.; Augustijns, P.; Annaert, P.; Van den Mooter, G.; Arimilli, M.N.; Kim, C.U.; De Clercq, E. Antiretroviral efficacy and pharmacokinetics of oral bis(Isopropyloxycarbonyloxymethyl)9-(2-Phosphonylmethoxypropyl)Adenine in mice. Antimicrob. Agents Chemother. 1998, 42, 1568–1573. [Google Scholar] [CrossRef]
- Yuen, M.-F.; Lai, C.-L. Adefovir dipivoxil in chronic hepatitis B infection. Expert Opin. Pharmacother. 2004, 5, 2361–2367. [Google Scholar] [CrossRef]
- Dando, T.M.; Plosker, G.L. Adefovir dipivoxil. Drugs 2003, 63, 2215–2234. [Google Scholar] [CrossRef]
- Qaqish, R.B.; Mattes, K.A.; Ritchie, D.J. Adefovir dipivoxil: A new antiviral agent for the treatment of hepatitis B virus infection. Clin. Ther. 2003, 25, 3084–3099. [Google Scholar] [CrossRef]
- Arimilli, M.N.; Cundy, K.C.; Dougherty, J.P.; Kim, C.U.; Oliyai, R.; Stella, V.J. Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavailability. U.S. Patent 5,922,695, 13 July 1999. [Google Scholar]
- Hakimelahi, G.H.; Ly, T.W.; Moosavi-Movahedi, A.A.; Jain, M.L.; Zakerinia, M.; Davari, H.; Mei, H.-C.; Sambaiah, T.; Moshfegh, A.A.; Hakimelahi, S. Design, synthesis, and biological evaluation of novel nucleoside and nucleotide analogues as agents against DNA viruses and/or retroviruses. J. Med. Chem. 2001, 44, 3710–3720. [Google Scholar] [CrossRef]
- Brown Ripin, D.H.; Teager, D.S.; Fortunak, J.; Basha, S.M.; Bivins, N.; Boddy, C.N.; Byrn, S.; Catlin, K.K.; Houghton, S.R.; Jagadeesh, S.T.; et al. Process improvements for the manufacture of tenofovir disoproxil fumarate at commercial scale. Org. Process Res. Dev. 2010, 14, 1194–1201. [Google Scholar] [CrossRef]
- Raboisson, P.; Lugnier, C.; Muller, C.; Reimund, J.-M.; Schultz, D.; Pinna, G.; Le Bec, A.; Basaran, H.; Desaubry, L.; Gaudiot, F.; et al. Design, synthesis and structure–activity relationships of a series of 9-substituted adenine derivatives as selective phosphodiesterase type-4 inhibitors. Eur. J. Med. Chem. 2003, 38, 199–214. [Google Scholar] [CrossRef]
- Lambertucci, C.; Antonini, I.; Buccioni, M.; Ben, D.D.; Kachare, D.D.; Volpini, R.; Klotz, K.-N.; Cristalli, G. 8-Bromo-9-Alkyl adenine derivatives as tools for developing new adenosine A2A and A2B receptors ligands. Bioorg. Med. Chem. 2009, 17, 2812–2822. [Google Scholar] [CrossRef] [PubMed]
- Buyens, D.M.S.; Mangondo, P.; Cukrowski, I.; Pilcher, L.A. Solvent-directed regioselective benzylation of adenine: Characterization of N9-Benzyladenine and N3-Benzyladenine. J. Heterocycl. Chem. 2017, 54, 2946–2950. [Google Scholar] [CrossRef]
- Siah, H.-S.M.; Gundersen, L.-L. Synthetic strategies to 9-Substituted 8-Oxoadenines. Synth. Commun. 2013, 43, 1469–1476. [Google Scholar] [CrossRef]
- Nair, V.; Chi, G.; Uchil, V.R. Diketo Acids with Nucleobase Scaffolds: Anti-HIV replication inhibitors targeted at HIV integrase. U.S. Patent 7,250,421, 31 July 2007. [Google Scholar]
- Rasmussen, M.; Hope, J. Heterocyclic ambident nucleophiles. III. The alkylation of sodium adenide. Aust. J. Chem. 1982, 35, 525. [Google Scholar] [CrossRef]
- Rasmussen, M.; Hope, J. Heterocyclic ambident nucleophiles. IV. The alkylation of metal salts of adenine. Aust. J. Chem. 1982, 35, 535. [Google Scholar] [CrossRef]
- Váňa, L.; Vrzal, L.; Dvořáková, H.; Himl, M.; Linhart, I. Direct arylation of adenine by fluoro- and chloronitrobenzenes: Effect of microwaves. Synth. Commun. 2014, 44, 788–799. [Google Scholar] [CrossRef]
- Rasmussen, M.; Leonard, N.J. Synthesis of 3-(2′-Deoxy-D-Erythro-Pentofuranosyl)adenine. application of a new protecting group, pivaloyloxymethyl(Pom). J. Am. Chem. Soc. 1967, 89, 5439–5445. [Google Scholar] [CrossRef]
- Beasley, A.; Rasmussen, M. Heterocyclic ambident nucleophiles. II. The alkylation of adenine. Aust. J. Chem. 1981, 34, 1107. [Google Scholar] [CrossRef]
- Oh, Y.; Yun, W.; Lee, S.; Kim, D.W. Kinetics and quantum chemical analysis of intramolecular S N 2 reactions by using metal salts and promoted by crown ethers: Contact ion pair vs. separated nucleophile mechanism. ChemistrySelect 2022, 7, 6. [Google Scholar] [CrossRef]
- Buyens, D.M.S.; Pilcher, L.A.; Roduner, E. Towards a molecular understanding of cation-anion interactions and self-aggregation of adeninate salts in DMSO by NMR and UV spectroscopy and crystallography. ChemPhysChem 2021, 22, 2025–2033. [Google Scholar] [CrossRef]
- Lee, S.-S.; Jadhav, V.H.; Kim, J.-Y.; Kim, S.-J.; Kim, D.W.; Lee, S. Computational study of S N 2 reactions promoted by crown ether: Contact ion pair versus solvent-separated ion pair mechanism. Int. J. Quantum Chem. 2018, 118, e25547. [Google Scholar] [CrossRef]
- Blanco, M.A.; Francisco, E.; Pendás, A.M. Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 2005, 1, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Cukrowski, I.; Dhimba, G.; Riley, D.L. A reaction energy profile and fragment attributed molecular system energy change (famsec)-based protocol designed to uncover reaction mechanisms: A case study of the proline-catalysed aldol reaction. Phys. Chem. Chem. Phys. 2019, 21, 16694–16705. [Google Scholar] [CrossRef] [PubMed]
- Mitoraj, M.P.; Sagan, F.; Szczepanik, D.W.; Lange, J.H.; Ptaszek, A.L.; Niekerk, D.M.E.; Cukrowski, I. Origin of hydrocarbons stability from a computational perspective: A case study of ortho-xylene isomers. ChemPhysChem 2020, 21, 494–502. [Google Scholar] [CrossRef]
- Cukrowski, I.; Dhimba, G.; Riley, D.L. A molecular-wide and electron density-based approach in exploring chemical reactivity and explicit dimethyl sulfoxide (dmso) solvent molecule effects in the proline catalyzed aldol reaction. Molecules 2022, 27, 962. [Google Scholar] [CrossRef] [PubMed]
- Cukrowski, I. A unified molecular-wide and electron density based concept of chemical bonding. WIREs Comput. Mol. Sci. 2022, 12, 1–19. [Google Scholar] [CrossRef]
- Cukrowski, I.; Sagan, F.; Mitoraj, M.P. On the stability of cis- and trans -2-butene isomers. an insight based on the famsec, iqa, and ets-nocv schemes. J. Comput. Chem. 2016, 37, 2783–2798. [Google Scholar] [CrossRef]
- Pendás, A.M.; Casals-Sainz, J.L.; Francisco, E. On electrostatics, covalency, and chemical dashes: Physical interactions versus chemical bonds. Chem.-A Eur. J. 2019, 25, 309–314. [Google Scholar] [CrossRef]
- Katz, L.; Penman, S. Association by hydrogen bonding of free nucleosides in non-aqueous solution. J. Mol. Biol. 1966, 15, 220–231. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision E.01 2016, Gaussian 09, Revision E.01, Gaussian, Inc., Wallin.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gomperts, R., Mennucci, B., Hratchian, H.P., D.J. Gaussian 16, Revision B.01 2016.
- Keith, T.A. AIMAll, version 19.10.12; TK Gristmill Software: Overland Park, KS, USA, 2019.
CIPs | N3N9 | N9 | N3 | N7 | N1 | N10 | π | |
---|---|---|---|---|---|---|---|---|
Na-Ade complexes | ||||||||
* | −128.0 | −117.8 | −115.1 | −97.8 | −85.6 | −83.5 | −80.5 | CCSD |
−133.6 | −122.1 | −119.1 | −100.1 | −72.1 | −83.8 | −82.3 | DFT | |
−14.3 | −12.1 | −11.1 | −11.2 | −9.8 | −7.5 | −0.8 | CCSD | |
−18.6 | −15.3 | −14.2 | −14.2 | −4.5 | −8.8 | −1.8 | DFT | |
−113.6 | −105.7 | −104.0 | −86.6 | −75.8 | −76.0 | −79.7 | CCSD | |
−115.0 | −106.8 | −105.2 | −85.9 | −67.6 | −75.0 | −80.4 | DFT | |
K-Ade complexes | ||||||||
−121.6 | - | - | −91.4 | −80.7 | −82.5 | CCSD | ||
−122.2 | - | - | −91.5 | −80.2 | −83.8 | DFT | ||
−20.6 | - | - | −13.9 | −12.3 | −10.5 | CCSD | ||
−21.7 | - | - | −15.0 | −12.6 | −10.3 | DFT | ||
−101.0 | - | - | −77.5 | −68.4 | −72.0 | CCSD | ||
−100.5 | - | - | −76.5 | −67.6 | −73.5 | DFT |
CIPs | N3N9 | N9 | N3 | N7 | N1 | N10 | π |
---|---|---|---|---|---|---|---|
Na-Ade complexes | |||||||
* | −29.4 | −21.3 | −23.0 | −15.6 | −10.8 | 17.8 | 2.8 |
−38.8 | −27.8 | −29.4 | −17.9 | −11.3 | 27.7 | 3.7 | |
9.5 | 6.5 | 6.4 | 2.3 | 0.5 | −9.9 | −0.9 | |
K-Ade complexes | |||||||
−19.9 | - | - | −7.0 | −4.6 | 13.5 | - | |
−25.2 | - | - | −7.5 | −3.6 | 21.5 | - | |
5.3 | - | - | 0.5 | −0.9 | −8.0 | - |
CIPs | N3N9 | N9 | N3 | N7 | N1 | N10 | π |
---|---|---|---|---|---|---|---|
Na-Ade complexes | |||||||
3.7 | 2.8 | 2.7 | 2.7 | 2.3 | 2.5 | 0.2 | |
−42.5 | −30.6 | −32.1 | −20.5 | −13.6 | 25.2 | 3.5 | |
K-Ade complexes | |||||||
3.1 | - | - | 1.8 | 1.5 | 1.9 | - | |
−28.3 | - | - | −9.3 | −5.1 | 19.6 | - |
Q(A) | ΔQ(A) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na-Ade complexes | |||||||||
Atom A | Ade− | N3N9 | N9 | N3 | N7 | N1 | N10 | π | |
N3 | −1.276 | −0.021 | 0.001 | −0.026 | 0.004 | 0.005 | 0.005 | 0.001 | |
N1 | −1.266 | 0.010 | 0.004 | 0.006 | 0.003 | −0.017 | 0.001 | 0.001 | |
N9 | −1.248 | −0.026 | −0.022 | −0.002 | 0.006 | 0.005 | 0.005 | 0.001 | |
N7 | −1.234 | 0.016 | 0.008 | 0.008 | −0.020 | 0.004 | 0.004 | 0.001 | |
N10 | −1.147 | −0.005 | −0.002 | −0.004 | 0.005 | 0.000 | 0.017 | 0.000 | |
C5 | 0.375 | 0.004 | 0.001 | 0.005 | −0.001 | 0.006 | 0.005 | −0.002 | |
C4 | 0.909 | −0.005 | 0.002 | 0.003 | 0.005 | 0.006 | 0.012 | −0.002 | |
C6 | 0.979 | 0.010 | 0.008 | 0.005 | 0.005 | 0.000 | −0.036 | 0.000 | |
C8 | 0.982 | 0.012 | 0.012 | 0.002 | 0.010 | 0.002 | 0.003 | −0.001 | |
C2 | 1.090 | 0.012 | 0.004 | 0.012 | 0.005 | 0.001 | −0.001 | −0.001 | |
H14 | 0.020 | 0.011 | 0.008 | 0.005 | 0.007 | 0.004 | 0.004 | 0.001 | |
H13 | 0.024 | 0.010 | 0.004 | 0.008 | 0.004 | 0.004 | 0.005 | 0.001 | |
H11 | 0.395 | 0.006 | 0.003 | 0.005 | 0.002 | 0.002 | −0.001 | 0.001 | |
H12 | 0.396 | 0.005 | 0.003 | 0.004 | −0.002 | 0.005 | −0.002 | 0.001 | |
Q(Ade−) | −1.000 | ΔQ(Ade−) | 0.039 | 0.034 | 0.031 | 0.031 | 0.028 | 0.021 | 0.003 |
Q(Na+) | 1.000 | ΔQ(Na+) | −0.040 | −0.034 | −0.031 | −0.031 | −0.028 | −0.021 | −0.003 |
K-Ade complexes | |||||||||
Atom A | N3N9 | N7 | N1 | N10 | |||||
N3 | −0.010 | - | - | 0.003 | 0.005 | 0.005 | - | ||
N1 | 0.007 | - | - | 0.002 | −0.006 | 0.002 | - | ||
N9 | −0.009 | - | - | 0.004 | 0.004 | 0.005 | - | ||
N7 | 0.011 | - | - | −0.005 | 0.003 | 0.004 | - | ||
N10 | −0.006 | - | - | 0.005 | 0.001 | 0.013 | - | ||
C5 | 0.004 | - | - | −0.001 | 0.005 | 0.003 | - | ||
C4 | −0.008 | - | - | 0.004 | 0.006 | 0.010 | - | ||
C6 | 0.009 | - | - | 0.002 | −0.003 | −0.031 | - | ||
C8 | 0.008 | - | - | 0.005 | 0.002 | 0.002 | - | ||
C2 | 0.010 | - | - | 0.004 | −0.001 | −0.001 | - | ||
H14 | 0.008 | 0.004 | 0.003 | 0.004 | |||||
H13 | 0.008 | 0.003 | 0.001 | 0.004 | |||||
H11 | 0.005 | 0.001 | 0.000 | 0.001 | |||||
H12 | 0.004 | −0.003 | 0.004 | 0.000 | |||||
Q(Ade−) | ΔQ(Ade−) | 0.041 | - | - | 0.028 | 0.025 | 0.021 | - | |
Q(K+) | 1.000 | ΔQ(K+) | −0.041 | - | - | −0.029 | −0.025 | −0.021 | - |
CIPs | N3N9 | N9 | N3 | N7 | N1 |
---|---|---|---|---|---|
in Na-Ade-(DMSO)4 molecular systems | |||||
−124.5 | −113.9 | −110.1 | −89.6 | −75.8 | |
−14.5 | −12.2 | −11.2 | −11.6 | −8.2 | |
−110.0 | −101.6 | −98.9 | −78.0 | −67.6 | |
in K-Ade-(DMSO)4 molecular systems | |||||
−113.8 | - | −83.0 | −72.7 | ||
−17.7 | −12.3 | −10.9 | |||
−96.1 | −70.7 | −61.8 |
CIPs | N3N9 | N9 | N3 | N7 | N1 |
---|---|---|---|---|---|
in Na-Ade-(DMSO)4 molecular systems | |||||
−43.9 | −45.3 | −46.0 | −46.4 | −42.9 | |
−10.5 | −11.7 | −11.0 | −11.7 | −11.1 | |
−33.4 | −33.6 | −35.1 | −34.7 | −31.7 | |
−43.3 | −46.6 | −45.9 | 5.9 | −43.2 | |
−10.9 | −11.0 | −11.8 | −0.2 | −10.0 | |
−32.4 | −35.6 | −34.1 | 6.1 | −33.3 | |
in K-Ade-(DMSO)4 molecular systems | |||||
−36.0 | −40.5 | −39.4 | |||
−12.0 | −13.0 | −13.0 | |||
−24.0 | −27.5 | −26.4 | |||
−39.5 | 4.3 | −6.8 | |||
−12.3 | 0.0 | 0.0 | |||
−27.2 | 4.3 | −6.8 |
CIPs | N3N9 | N9 | N3 | N7 | N1 |
---|---|---|---|---|---|
in Na-Ade-(DMSO)4 molecular systems | |||||
−41.3 | −36.4 | −36.8 | −40.2 | −18.2 | |
−31.4 | −27.8 | −28.1 | −29.0 | −19.1 | |
−10.0 | −8.6 | −8.7 | −11.1 | 1.0 | |
−42.5 | −36.8 | −41.1 | −45.7 | −44.4 | |
−33.3 | −28.2 | −31.5 | −35.0 | −33.3 | |
−9.2 | −8.6 | −9.7 | −10.7 | −11.1 | |
in K-Ade-(DMSO)4 molecular systems | |||||
−38.4 | −37.9 | −22.1 | |||
−28.6 | −29.6 | −21.0 | |||
−9.7 | −8.3 | −1.1 | |||
−39.3 | −37.1 | −42.7 | |||
−31.8 | −29.2 | −30.4 | |||
−7.5 | −7.9 | −12.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buyens, D.M.S.; Pilcher, L.A.; Cukrowski, I. Coordination Sites for Sodium and Potassium Ions in Nucleophilic Adeninate Contact ion-Pairs: A Molecular-Wide and Electron Density-Based (MOWED) Perspective. Molecules 2022, 27, 6111. https://doi.org/10.3390/molecules27186111
Buyens DMS, Pilcher LA, Cukrowski I. Coordination Sites for Sodium and Potassium Ions in Nucleophilic Adeninate Contact ion-Pairs: A Molecular-Wide and Electron Density-Based (MOWED) Perspective. Molecules. 2022; 27(18):6111. https://doi.org/10.3390/molecules27186111
Chicago/Turabian StyleBuyens, Dominique M. S., Lynne A. Pilcher, and Ignacy Cukrowski. 2022. "Coordination Sites for Sodium and Potassium Ions in Nucleophilic Adeninate Contact ion-Pairs: A Molecular-Wide and Electron Density-Based (MOWED) Perspective" Molecules 27, no. 18: 6111. https://doi.org/10.3390/molecules27186111
APA StyleBuyens, D. M. S., Pilcher, L. A., & Cukrowski, I. (2022). Coordination Sites for Sodium and Potassium Ions in Nucleophilic Adeninate Contact ion-Pairs: A Molecular-Wide and Electron Density-Based (MOWED) Perspective. Molecules, 27(18), 6111. https://doi.org/10.3390/molecules27186111