Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller’s Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Analysis
2.3. Bioactive Substances
2.4. DPPH Scavenging Activity
2.5. In Vitro Gas Production
2.5.1. In Vitro Simulation of Rumen Fermentation Equipment
2.5.2. In Vitro Simulation of Rumen Fermentation Processes
2.6. Rumen Fermentation Parameters
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Bioactive Substances and DPPH Scavenging Activity
3.3. Total Gas Production Parameters
3.4. Methane and Hydrogen Production
3.5. Rumen Fermentation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Li, D. Impact of increased demand for animal protein products in Asian countries: Implications on global food security. Anim. Front. 2013, 3, 48–55. [Google Scholar] [CrossRef]
- Minoy, C.; Acosta, J.P.; Lee, S.A.; Stein, H.H. A new source of high-protein distillers dried grains with solubles (DDGS) has greater digestibility of amino acids and energy, but less digestibility of phosphorus, than de-oiled DDGS when fed to growing pigs. J. Anim. Sci. 2020, 98, skaa200. [Google Scholar]
- Xu, J.; Hou, Y.J.; Zhao, G.Q.; Yu, A.B.; Su, Y.J.; Huo, Y.J.; Zhu, J.M. Replacement of forage fiber sources with dried distillers grains with solubles and corn germ meal in Holstein calf diets. J. Integr. Agric. 2014, 13, 1753–1758. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; Nys, R.D.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Tian, X.; Wang, X.; Li, J.; Luo, Q.; Ban, C.; Lu, Q. The effects of selenium on rumen fermentation parameters and microbial metagenome in goats. Fermentation. 2022, 8, 240. [Google Scholar] [CrossRef]
- Jayanegara, A.; Ridla, M.B.; Laconi, E.; Nahrowi. Ruminal Methane Emissions In Vitro of Plants Differing in Their Main Phenolic Fractions. 2015. Available online: http://anuragaja.staff.ipb.ac.id/files/2011/01/Jayanegara_FP_AAAP-2014_Plant-phenolics.pdf (accessed on 8 June 2015).
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Sustainable Improvement of Animal Production and Health; Odongo, N.E., Garcia, M., Viljoen, G.J., Eds.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010. [Google Scholar]
- Zhao, Y.; Yan, S.; He, Z.; Anele, U.Y.; Swift, M.L.; Mcallister, T.A.; Tim, A.; Yang, W. Effect of starch content and processing method on in situ ruminal and in vitro intestinal digestion of barley grain in beef heifers. Anim. Feed Sci. Technol. 2016, 216, 121–128. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Li, H.; Zhou, D.; Wang, X.; Tian, Y.; Qin, J.; Tian, X.; Lu, Q. The effects of purple corn pigment on growth performance, blood biochemical indices, meat quality, muscle amino acids, and fatty acids of growing chickens. Foods 2022, 11, 1870. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Dia, V.P.; West, L.; West, M.; Singh, V.; Wang, Z.; Allen, C. Temperature dependency of shelf and thermal stabilities of anthocyanins from corn distillers’ dried grains with solubles in different ethanol extracts and a commercially available beverage. J. Agric. Food Chem. 2015, 63, 10032–10041. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Luo, Q.; Wang, X.; Wang, T.; Zhou, D.; Xie, L.; Ban, C.; Lu, Q. Effects of purple corn anthocyanin on growth performance, meat quality, muscle antioxidant status, and fatty acid profiles in goats. Foods 2022, 11, 1255. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Distillers’ dried grains with solubles (DDGS) and its potential as fermentation feedstock. Appl. Microbiol. Biotechnol. 2020, 104, 6115–6128. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; OAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Osborne, D.R.; Voogt, P. The Analysis of Nutrients in Foods; Academic Press: London, UK, 1978. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult. 1977, 28, 49–55. [Google Scholar]
- Yang, Z.; Zhai, W. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov. Food Sci. Emerg. 2010, 11, 169–176. [Google Scholar] [CrossRef]
- Tian, X.Z.; Wang, X.; Ban, C.; Luo, Q.Y.; Li, J.X.; Lu, Q. Effect of purple corn anthocyanin on antioxidant activity, volatile compound and sensory property in milk during storage and light prevention. Front. Nutr. 2022, 9, 862689. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, R.; Tang, S.X.; Tan, Z.L.; Zhou, C.S.; Han, X.F. Comparisons of manual and automated incubation systems: Effects of venting procedures on in vitro ruminal fermentation. Livest. Sci. 2016, 184, 41–45. [Google Scholar] [CrossRef]
- Wang, M.; Janssen, P.H.; Sun, X.Z.; Muetzel, S.; Tavendale, M.; Tan, Z.L.; Pacheco, D. A mathematical model to describe in vitro kinetics of H2 gas accumulation. Anim. Feed Sci. Technol. 2013, 184, 1–16. [Google Scholar] [CrossRef]
- Wang, M.; Tang, S.X.; Tan, Z.L. Modeling in vitro gas production kinetics: Derivation of logistic–exponential (LE) equations and comparison of models. Anim. Feed Sci. Technol. 2011, 165, 137–150. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Small Ruminants; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Wang., M.; Sun, X.Z.; Tang, S.X.; Tan, Z.L.; Pacheco, D. Deriving fractional rate of degradation of logistic-exponential (LE) model to evaluate early in vitro fermentation. Animal 2013, 7, 920–929. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Patil, B.B.; Dhage, S.A.; Pachpute, S.T. In vitro evaluation of different distiller’s grains with solubles. Indian J. Anim. Nutr. 2015, 32, 181–186. [Google Scholar]
- Liu, K. Chemical composition of distillers grains, a review. J. Agric. Food Chem. 2011, 59, 1508–1526. [Google Scholar] [CrossRef] [PubMed]
- Mracek, J.M. Use of Distiller Grains in Alternative Beef Heifer Systems. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2014. [Google Scholar]
- Böttger, C.; Südekum, K.H. European distillers dried grains with solubles (DDGS): Chemical composition and in vitro evaluation of feeding value for ruminants. Anim. Feed Sci. Technol. 2017, 224, 66–77. [Google Scholar] [CrossRef]
- Böttger, C.; Südekum, K.H. Protein value of distillers dried grains with solubles (DDGS) in animal nutrition as affected by the ethanol production process. Anim. Feed Sci. Technol. 2018, 244, 11–17. [Google Scholar] [CrossRef]
- Curzaynz, K.; Santillán-Gómez, E.A.; Flores-Santiago, E.J.; Bárcena-Gama, R.; Portela, D.F. Effect of dried distillers grains (DDGS) on diet digestibility, growth performance, and carcass characteristics in creole wool lambs fed finishing diets. S. Afr. J. Anim. Sci. 2019, 49, 56–62. [Google Scholar] [CrossRef]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef]
- Cabiddu, A.; Delgadillo-Puga, C.; Decandia, M.; Molle, G. Extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals 2019, 9, 771. [Google Scholar] [CrossRef]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Zhou, D.; Long, Q.M.; Wang, X.; Lu, Q.; Wen, G.L. Effects of purple corn anthocyanin on blood biochemical indexes, ruminal fluid fermentation, and rumen microbiota in goats. Front. Vet. Sci. 2021, 8, 715710. [Google Scholar] [CrossRef]
- Dia, V.P.; Wang, Z.; West, M.; Singh, V.; West, L.; De Mejia, E.G. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles. J. Agric. Food Chem. 2015, 63, 3205–3218. [Google Scholar] [CrossRef]
- Li, Y.; Hu, H.; Zu, X.; Shi, M.; Zhang, Z.; Yang, Y. Improvement of physiological active substance of wheat dried distillers’ grains with solubles fermented by Preussia aemulans under optimum fermentation conditions. Int. J. Biol. 2012, 4, 91–100. [Google Scholar] [CrossRef]
- Lau, E.T.L.; Johnson, S.K.; Stanley, R.A.; Mereddy, R.; Mikkelsen, D.; Halley, P.J.; Steadman, K.J. Formulation and characterization of drug-loaded microparticles using distillers dried grain kafirin. Cereal Chem. 2015, 92, 246–252. [Google Scholar] [CrossRef]
- Moriel, P.; Artioli, L.F.A.; Piccolo, M.B.; Marques, R.S.; Poore, M.H.; Cooke, R.F. Frequency of wet brewers grains supplementation during late-gestation of beef cows and its effects on offspring postnatal growth and immunity. J. Anim Sci. 2016, 94, 2553–2563. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.D. Impact of Wet Distillers Grains Plus Solubles and Antioxidants on a Basic Mechanism of Beef Tenderization. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 2015. [Google Scholar]
- Tanaka, M.; Suzuki, T.; Kotb, S.; Kamiya, Y. Effect of distiller’s dried grains with solubles (DDGS) feeding to dairy cows on oxidative status under hot condition. JARQ-JPN. Agric. Res. Q. 2011, 45, 457–460. [Google Scholar] [CrossRef]
- Blummel, M.; Becker, K. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Brit. J. Nutr. 1997, 77, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Slusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Vazirigohar, Z.; Kozłowska, M.; Cieslak, M. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Moran, J. Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics; Landlinks Press: Collingwood, Australia, 2005. [Google Scholar]
- Wysocka, O.; Pecka, E.; Zawadzki, W. The potential of using corn dried distillers grains with solubles (DDGS) in order to improve the fermentation profile in sheep. Folia Pomer. Univ. Technol. Stetin. 2015, 320, 109–119. [Google Scholar]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric. 2010, 90, 511–520. [Google Scholar] [CrossRef]
- Massé, D.I.; Jarret, G.; Benchaar, C.; Saady, N.M.C. Effect of corn dried distiller grains with solubles (DDGS) in dairy cow diets on manure bioenergy production potential. Animals 2014, 4, 82–92. [Google Scholar] [CrossRef]
- Chen, J.; Harstad, O.M.; Mcallister, T.; Drsch, P.; Holo, H. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. A-An. 2020, 69, 169–175. [Google Scholar] [CrossRef]
- Tian, X.Z.; Lu, Q.; Zhao, S.G.; Li, J.X.; Luo, Q.Y.; Wang, X.; Zhang, Y.D.; Zheng, N. Purple corn anthocyanin affects lipid mechanism, flavor compound profiles, and related gene expression of longissimus thoracis et lumborum muscle in goats. Animals 2021, 11, 2407. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.H.C. Methane Production in Dairy Cows. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2017. [Google Scholar]
- Hünerberg, M.; Little, S.M.; Beauchemin, K.A.; McGinn, S.M.; O’Connor, D.; Okine, E.K.; Harstad, O.M.; Kröbel, R.; McAllister, T.A. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agric. Syst. 2014, 127, 19–27. [Google Scholar] [CrossRef]
- Castillo-Lopez, E.; Jenkins, C.J.R.; Aluthge, N.D.; Tom, W.; Fernando, S.C. The effect of regular or reduced-fat distillers grains with solubles on rumen methanogenesis and the rumen bacterial community. J. Appl. Microbiol. 2017, 123, 1381–1395. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Huang, S.; Zhang, L.; Ge, Z.; Sun, L.; Zong, W. Purification of polyphenols from distiller’s grains by macroporous resin and analysis of the polyphenolic components. Molecules 2019, 24, 1284. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Wang, X.; Xiao, M.M.; Zhou, D.; Lu, Q.; Chen, X. Effect of supplementation with selenium-yeast on muscle antioxidant activity, meat quality, fatty acids and amino acids in goats. Front. Vet. Sci. 2022, 8, 813672. [Google Scholar] [CrossRef] [PubMed]
- Kraidees, M.S. Influence of urea treatment and soybean meal (urease) addition on the utilization of wheat straw by sheep. Asian Austral. J. Anim. 2005, 18, 957–965. [Google Scholar] [CrossRef]
- Suarez-Mena, F.X.; Lascano, G.J.; Rico, D.E.; Heinrichs, A.J. Effect of forage level and replacing canola meal with dry distillers grains with solubles in precision-fed heifer diets: Digestibility and rumen fermentation. J. Dairy Sci. 2015, 98, 8054–8065. [Google Scholar] [CrossRef]
- Pecka-Kiełb, E.; Zachwieja, A.; Mista, D.; Zawadzki, W.; Zielak-Steciwko, A. Frontiers in Bioenergy and Biofuels; Jacob-Lopes, E., Zepka, L.Q., Eds.; Academic Press: New York, NY, USA, 2017. [Google Scholar]
- Owens, F.N.; Basalan, M. Ruminal Fermentation. In Rumenology; Millen, D., De Beni Arrigoni, M., Lauritano Pacheco, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 63–102. [Google Scholar]
- Miśta, D.; Pecka, E.; Zachwieja, A.; Zawadzki, W.; Bodarski, R.; Paczyńska, K.; Tumanowicz, J.; Kupczyński, R.; Adamski, M. In vitro ruminal fluid fermentation as influenced by corn-derived dried distillers’ grains with solubles. Folia Biol. 2014, 62, 345–351. [Google Scholar] [CrossRef] [Green Version]
Parameter 1 | WDG 2 | RDG | GDG | CDG | SEM | p-Value |
---|---|---|---|---|---|---|
DM (%) | 84.16 c | 87.01 b | 84.28 c | 89.24 a | 0.3983 | <0.0001 |
Ash (% of DM) | 4.77 d | 1.12 a | 2.63 c | 2.18 b | 0.0551 | <0.0001 |
OM (% of DM) | 95.23 d | 98.88 a | 97.37 c | 97.82 b | 0.0551 | <0.0001 |
CP (% of DM) | 17.00 c | 33.73 b | 44.19 a | 8.59d | 0.4729 | <0.0001 |
EE (% of DM) | 6.09 b | 2.82 c | 2.47 c | 11.92 a | 0.1405 | <0.0001 |
GE (MJ/kg of DM) | 18.65 c | 21.02 b | 21.96 a | 18.23d | 0.0252 | <0.0001 |
NDF (% of DM) | 25.81 b | 19.21 c | 20.46 b c | 52.63 a | 1.8605 | <0.0001 |
ADF (% of DM) | 17.21 a | 8.73 b | 9.14 b | 10.50 b | 0.6344 | <0.0001 |
Hemicellulose (% of DM) | 8.59 b | 10.48 b | 11.32 b | 42.13 a | 1.3550 | <0.0001 |
CHO (% of DM) | 56.31 b | 49.34 c | 34.99d | 66.56 a | 0.7443 | <0.0001 |
Parameter 1 | WDG 2 | RDG | GDG | CDG | SEM | p-Value |
---|---|---|---|---|---|---|
a (mL) | 7.28 a | −12.21 c | 0.88 b | −16.77 d | 0.5258 | <0.0001 |
b (mL) | 274.20 c | 338.83 b | 212.07 d | 439.07 a | 3.2339 | <0.0001 |
a+b (mL) | 281.48 c | 326.62 b | 212.95 d | 422.30 a | 3.2856 | <0.0001 |
c (% h) | 0.0666 b | 0.0709 a | 0.0664 b | 0.0622 c | 0.0008 | 0.0006 |
k (/h) | 0.0689 d | 0.1522 a | 0.1003 c | 0.1347 b | 0.0017 | <0.0001 |
IFRD (/h) | 0.0689 a | 0.0476 c | 0.0611 b | 0.0432 d | 0.0021 | <0.0001 |
HMGP (h) | 10.06 b | 9.43 c | 9.69 b c | 10.50 a | 0.1265 | 0.0017 |
DMD (%) | 47.61 d | 63.74 b | 60.56 c | 68.59 a | 0.8497 | <0.0001 |
Parameter 1 | WDG 2 | RDG | GDG | CDG | SEM | p-Value |
---|---|---|---|---|---|---|
CH4 | ||||||
CH4 (%) | 16.91 a | 15.41 b | 16.54 a | 15.53 b | 0.2595 | 0.0081 |
VCH4 (mL/g) | 39.55 c | 42.74 b | 28.60 d | 52.11 a | 0.7776 | <0.0001 |
VfCH4 (mL/g) | 40.93 b | 40.41 b | 28.83 c | 50.33 a | 0.5758 | <0.0001 |
k (/h) | 0.09 c | 0.17 a | 0.12 b | 0.16 a | 0.0062 | <0.0001 |
H2 | ||||||
H2 (%) | 0.11 | 0.11 | 0.11 | 0.10 | 0.0013 | 0.1825 |
VH2 (mL/g) | 0.39 c | 0.43 b | 0.29 d | 0.52 a | 0.0061 | <0.0001 |
VfH2 (mL/g) | 0.38 c | 0.42 b | 0.29 d | 0.52 a | 0.0057 | <0.0001 |
k (/h) | 0.10 c | 0.20 a | 0.11 b c | 0.13 b | 0.0068 | <0.0001 |
Parameter 1 | WDG 2 | RDG | GDG | CDG | SEM | p-Value |
---|---|---|---|---|---|---|
pH | 6.60 c | 6.71 b | 6.97 a | 6.13 d | 0.0055 | <0.0001 |
NH3-N (mmol/L) | 8.41 b | 14.00 a | 14.40 a | 9.64 b | 0.4970 | <0.0001 |
VFA, % molar | ||||||
Acetic acid | 67.01 a | 62.87 c | 60.43 d | 65.06 b | 0.2870 | <0.0001 |
Propionic acid | 22.60 b | 22.91 ab | 19.09 d | 23.07 a | 0.1099 | <0.0001 |
Butyric acid | 7.22 c | 7.64 b | 8.18 a | 7.15 c | 0.0975 | 0.0003 |
Isobutyrate | 0.79 c | 1.60 b | 3.24 a | 0.88 c | 0.0715 | <0.0001 |
Valerate | 1.29 d | 2.07 b | 3.09 a | 1.72 c | 0.0415 | <0.0001 |
Isovalerate | 1.10 d | 2.91 b | 5.98 a | 2.11 c | 0.1287 | <0.0001 |
Acetic acid to propionic acid ratio | 2.96 b | 2.92 b | 3.17 a | 2.82 c | 0.0249 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Luo, Q.; Li, J.; Wang, X.; Ban, C.; Qin, J.; Tian, Y.; Tian, X.; Chen, X. Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller’s Grains. Molecules 2022, 27, 6134. https://doi.org/10.3390/molecules27186134
Lu Q, Luo Q, Li J, Wang X, Ban C, Qin J, Tian Y, Tian X, Chen X. Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller’s Grains. Molecules. 2022; 27(18):6134. https://doi.org/10.3390/molecules27186134
Chicago/Turabian StyleLu, Qi, Qingyuan Luo, Jiaxuan Li, Xu Wang, Chao Ban, Jixiao Qin, Yayuan Tian, Xingzhou Tian, and Xiang Chen. 2022. "Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller’s Grains" Molecules 27, no. 18: 6134. https://doi.org/10.3390/molecules27186134
APA StyleLu, Q., Luo, Q., Li, J., Wang, X., Ban, C., Qin, J., Tian, Y., Tian, X., & Chen, X. (2022). Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller’s Grains. Molecules, 27(18), 6134. https://doi.org/10.3390/molecules27186134