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Abstract: Proteins are the fundamental biological macromolecules which underline practically all bio-
logical activities. Protein–protein interactions (PPIs), as they are known, are how proteins interact with
other proteins in their environment to perform biological functions. Understanding PPIs reveals how
cells behave and operate, such as the antigen recognition and signal transduction in the immune system.
In the past decades, many computational methods have been developed to predict PPIs automat-
ically, requiring less time and resources than experimental techniques. In this paper, we present
a comparative study of various graph neural networks for protein–protein interaction prediction.
Five network models are analyzed and compared, including neural networks (NN), graph convolu-
tional neural networks (GCN), graph attention networks (GAT), hyperbolic neural networks (HNN),
and hyperbolic graph convolutions (HGCN). By utilizing the protein sequence information, all of
these models can predict the interaction between proteins. Fourteen PPI datasets are extracted and
utilized to compare the prediction performance of all these methods. The experimental results show
that hyperbolic graph neural networks tend to have a better performance than the other methods on
the protein-related datasets.

Keywords: graph neural networks; protein–protein interaction; neural networks

1. Introduction

Proteins are versatile organic macromolecules that carry out a plethora of essential
tasks for organisms. According to [1], almost 80% of proteins interact with some other
proteins while performing their functions. There are some examples of biological processes
that entail protein interactions, including DNA transcription and replication, hormone
regulation, metabolism, antigen recognition, and signal transduction [2,3]. These interac-
tions, which are known as protein–protein interactions (PPIs), are generated when two or
more protein molecules come into physical contact. It is necessary to study PPIs and their
various interaction types in order to obtain an in-depth understanding of the cellular bio-
logical activities in normal and diseased states, such as the antigen recognition and signal
transduction in the immune system, which would provide insights into the exploration of
molecular mechanism and protein functions [4]. These studies make it easier to identify
therapeutic targets, synthesize drugs, and develop novel drugs [5,6].

In the past decades, there have been some high-throughput experimental methods
proposed to detect the interaction between proteins, including the yeast two-hybrid screens
(Y2H) [7], tandem affinity purification (TAP) [8], mass spectrometric protein complex iden-
tification (MS-PCI) [9], tandem affinity ourification and mass spectrometry (TAP-MS) [10],
and affinity chromatography and co-immunoprecipitation (Co-IP) [11]. These experimental
techniques can help build PPI databases for various species. However, these techniques
have some shortcomings. The functional annotation of PPIs are updated slowly. In ad-
dition, the PPI data gathered by these techniques have a significant probability of false
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positives and false negatives due to the impact by the experimental setting and device reso-
lution [12,13]. In addition, the cost is another major disadvantage of experimental methods
because these experiments are time-consuming and labor expensive. More significantly,
when a PPI can be detected through one single piece of experiment, it is hard to be fully
interpreted [14]. Thus, reliable computational methods are required to learn knowledge
from PPI data for a PPI prediction.

Recently, some computational methods have been developed in this field. The com-
putational techniques can enhance the precision of PPI prediction when combined with
experimental techniques [15,16]. These high-throughput computing techniques may be
classified into two categories: traditional machine learning methods and deep learning
methods. For the first category, several machine learning models were used to predict
PPIs in order to increase the efficiency and accuracy, including Decision Trees [17], Naive
Bayes [18], Random Forest [19], and Support Vector Machine (SVM) [20,21]. These machine
learning methods seek to summarize entire sequence data pertinent to PPIs and quantify
the properties of the 20 canonical amino acids. Deep learning techniques have an advantage
over traditional machine learning techniques in that they can directly extract features from
data and identify nonlinear relationships between extracted and learned features. They are
capable to fully make use of the growing large-scale, high-dimension, and complex PPI
datasets. Thus, deep learning techniques have gained extraordinary popularity in the past
few years and have been effectively used to solve a variety of issues, including PPI predic-
tion [22–27]. For example, Lei et al. proposed an effective computational technique based on
a Multi-Modal Deep Polynomial Network for PPI prediction while embedding various data
from protein properties [28]. Hashemifar et al. proposed a sequence-based convolution-
based model to predict interactions between proteins and proteins [29]. Wu et al. proposed
a recurrent neural network-based approach for neoantigen prediction, considering inter-
actions between peptide–HLA (human leukocyte antigen) [30]. However, most of the
previous deep learning-based methods only took into account sequence data, with a lack
attention on the network data, e.g., the relationship with neighboring nodes, which has
been shown to be useful for PPI prediction.

Graph neural networks have advanced significantly in the past few years and have
become an important tool in graph-based studies, such as chemical stability prediction [31],
the prediction of protein solubility [32], the modeling of polypharmacy side effects [33],
and drug–target interactions [34]. For instance, Huang et al. employed a graph convolution
model to predict the relationships between miRNA and drug resistance [35]. It has become
popular to apply a graph neural network-based model for PPI prediction [36–39]. Yang et al.
have presented a signed variational graph auto-encoder (S-VGAE) for protein–protein
interactions prediction by treating PPI networks as indirect graphs, which can success-
fully utilize the graph structure and protein sequence information simultaneously [37].
Paradesi et al. exploited several structural features for the Saccharomyces cerevisiae PPI net-
works and utilized these features to train classifiers for the new protein–protein interaction
prediction [40]. Song et al. presented an end-to-end model for predicting protein–protein
interactions, with the utilization of predicted protein structural information [41]. By exploit-
ing the topological data of PPI networks, You et al. devised a robust manifold embedding
approach for evaluating the reliability of protein–protein interactions and forecasting new
interactions [42]. Currently, most of the previous studies mainly investigate the applica-
bility and feasibility of graph neural networks for protein–protein interactions prediction
while learning graphical molecular representations of the proteins.

In this paper, we conduct a thorough comparison investigation of several graph neural
network-based methods for protein–protein interactions prediction to evaluate the pre-
dictive capability of various methods. Five frequently used methods, including neural
networks [43], graph convolutional neural networks (GCN) [44], graph attention networks
(GAT) [45], hyperbolic neural networks (HNN) [46], and hyperbolic graph convolutions
(HGCN) [47], are carefully contrasted using fourteen PPI networks datasets to look at the
benefits and drawbacks of various approaches. These fourteen PPI networks datasets are
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extracted from the String database with seven types of interactions. The experimental
results demonstrate that graph neural network-based models are powerful for solving
the protein–protein interactions prediction tasks, and hyperbolic graph neural networks
tend to have a better performance than the other methods on the protein-related datasets.
The results of this study should serve as guidance and a point of reference for choos-
ing appropriate graph neural networks to create predictive models for protein–protein
interactions prediction.

The rest of this paper is organized as follows. Section 2 introduces the dataset used
and the graph neural networks studied in this paper. Section 3 presents the comparative
studies of different neural networks models. Finally, Section 4 concludes by summarizing
the findings and drawing conclusions.

2. Materials and Methods
2.1. Datasets
2.1.1. Data Collection

For the purpose of evaluating various graph neural networks, we draw upon the
multi-type PPI data from the STRING database2 [48]. The STRING database is widely
recognized as a reliable resource for research studies that are related to proteins. This
database has compiled a comprehensive and objective global protein–protein interaction
network by collecting, scoring, and integrating the information from the majority of publicly
accessible sources of protein–protein interactions information, including direct and indirect
interactions. Here, direct refers to physical interactions between proteins, while indirect
refers to functional interactions between proteins.

2.1.2. Data Preprocessing

In this study, the multiple interaction types between proteins using STRING is the main
topic. PPI is divided into seven distinct categories, including reaction [49], binding [50],
post-translational modifications (ptm) [51,52], activation [53], inhibition [54], catalysis [55],
and expression [56]. At least one of these interaction types is present in every pair of
proteins that interact with one another. Chen et al. generated two database subsets,
extracting from the Homo sapiens subset of STRING database, by randomly selecting 1690
and 5189 proteins that match 40% of sequence similarity [57]. These two subsets are referred
to as SHS27k and SHS148k, and they include 7624 and 44,488 multi-label protein–protein
interactions, respectively.

On the basis of these two datasets, we extract each interaction between proteins and
generate fourteen new datasets. In addition, we calculate the proportion of positive samples
in these datasets, as shown in Table 1. From the table, we observe that the data-imbalance
issue exists in the PPI datasets. Each dataset focuses on one unique protein–protein
interaction. We also present two Pie figures to demonstrate the protein–protein interaction
type distribution in the two datasets, as shown in Figure 1. From the two figures, we can
observe that reaction accounts for the largest part in all the interactions. The interaction
binding has obtained a comparable portion which indicates its importance in the protein
functionalities. In the following section, we adopt various graph neural network-based
models on these PPT datasets to evaluate the learning power and feasibility of graph neural
networks on PPI.
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Table 1. Dataset Description.

Datasets Interaction
Type # PPI Positive

Samples Datasets Interaction
Type # PPI Positive

Samples

SHS27k

reaction 18,162 1.09%

SHS148k

reaction 102,964 0.67%
binding 16,056 0.47% binding 93,632 0.28%

ptm 2872 1.05% ptm 20,154 0.38%
activation 7400 0.40% activation 42,516 0.23%
inhibition 5550 1.48% inhibition 34,712 0.76%
catalysis 11,796 0.79% catalysis 67,168 0.50%

expression 1572 0.40% expression 7896 0.16%

(a) SHS27k (b) SHS148k

Figure 1. Interaction type distribution in two subsets.

2.2. Models
2.2.1. Background

In this section, we introduce the background model, neural network, which is the key
component of most graph neural networks. It is an algorithm inspired by the structure of
human brain. Just like the human brain, it is an information response network topology in
which many neurons process information and transmit information through the connections
between neurons. For neural networks, we divide neurons into three layers: input layer,
hidden layer, and output layer. Figure 2 shows the simplest three-layer neural network.
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Figure 2. Neural Networks.

The input layer is the data that you need to process, and it will transfer the information
to the hidden layer for processing. Each unit of the hidden layer contains an activation
function, which multiplies the information transmitted from the input layer by different
weights and then activates it, then transmits the processed information to the output layer.
The unit of the output layer multiplies the information transmitted from the hidden layer
by the corresponding weights to obtain your desired result. It should be noted that the
whole network has only one input layer and one output layer, while the number of hidden
layers can be determined according to the problem. In addition, there are several commonly
used activation functions:

ReLU. It is the most commonly used activation function because of its simple imple-
mentation and good performance. Given the element x, the ReLU function is defined as
shown in Equation (1).

ReLU(x) = max(x, 0) (1)

Sigmoid. We often use gradient method to optimize the network, so we use sig-
moid function as an approximation of a smooth and differentiable threshold unit, which
transforms the input into the output on the interval (0, 1):

sigmoid(x) =
1

1 + exp(−x)
(2)

Tanh. Similar to sigmoid function, tanh function can compress its input into the
interval (−1, 1):

tanh(x) =
1− exp(−2x)
1 + exp(−2x)

(3)

2.2.2. Graph Convolutional Neural Networks (GCN)

When dealing with the information of graph structure, neural networks can only input
each element of the graph separately but cannot introduce the structure information of the
graph. Therefore, some scholars put forward graph neural network, aiming at extracting
features from graphs and introducing the structural relationship of graphs into the model.
Graph convolution neural network (GCN) [44] is a commonly used method, and it works
as shown in Figure 3.
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Figure 3. Graph convolution neural network. (a) Sample neighborhood. (b) Aggregate features from
neighbors. (c) Taking the aggregated node features as the input of the neural network.

When we extract the structural information of a graph, we aggregate the neighbor
features of nodes. For GCN, the steps during aggregating are as follows:

Step 1. Consider the influence of neighbor nodes on the current node:

aggregate(X) = AX (4)

X is the feature matrix of the node.
Step 2. At the same time, the node itself should be considered:

aggregate(X) = ÂX (5)

Â = A + I (6)

A is the adjacency matrix of graph, I is identity matrix.
Step 3. Symmetrical normalization. If the degree difference between two adjacent
nodes is large, the node with smaller degree will be distorted after each round of
aggregation. To reduce this effect, we need symmetrical normalization:

aggregate(X) = D̂−0.5ÂD̂−0.5X (7)

D̂ = D + I (8)

D is degree matrix of graph.
Step 4. Multiply the aggregated features by parameters and activate them:

X(l+1) = σ(D̂−0.5ÂD̂−0.5X(l)W(l)) (9)

W(l) is the learnable parameters of layer l, X(l) is the feature matrix of layer l, σ is a
nonlinear activation function.

2.2.3. Graph Attention Networks (GAT)

Graph attention networks (GAT) [45] are another graph neural network. In GCN, we
use symmetric normalization to solve the problem of node distortion, while in GAT, we
introduce attention mechanism, so that neural network can learn to decide the influence of
each neighbor node on itself.

After obtaining the learnable linear features from the input layer, the next step is to
calculate the weight matrix. Each element in the matrix represents the influence between
nodes, called attention coefficient, which is calculated as follows:

αij =
exp(LeakyReLU(ãT [W~hi||W~hj]))

∑k∈Ni
exp(LeakyReLU(ãT [W~hi||W~hk]))

(10)
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Ni is the set of all neighbor nodes of i node, LeakyReLU is an activation function, ãT is a
learnable vector, W is a learnable matrix,~h is the feature of node. "||" means to spell two
vectors together. We can learn that the numerator is the influence of j node on i and the
denominator is the influence of all neighbors of i on i. Our attention coefficient is the ratio
of the two, which is also a normalization operation.

After calculating the attention coefficient of all the neighbors of node i and its own
attention coefficient, we can calculate the new features of node i according to Equation (11).

~h
′
i = σ( ∑

j∈Ni

αijW~hj) (11)

At the same time, it is worth noting that the data of graph structure have several
independent features, and the feature~h we input each time is only one of them. In order
to ensure the effectiveness of attention mechanism, we need to introduce all independent
features, respectively, which is called multi-head attention mechanism, as shown in Figure 4.

Figure 4. Multi-headed self-attention.

After the introduction of multi-head attention mechanism, the calculation formula of
features is changed, as shown in Equation (12).

~h
′
i =

K
‖

k=1
σ( ∑

j∈Ni

αij
kWk~hj) (12)

K represents K-attention mechanism.

2.2.4. Hyperbolic Neural Networks (HNN)

Hyperbolic neural networks (HNN) [46] generalize deep neural models to non-
Euclidean domains by constructing hyperbolic geometric spaces, which can be used to
visualize large categorical data or embed complex neural networks using their high capacity
and tree-like nature, while performing far better than Euclidean spaces on hierarchical
classification or inherited data. For HNN, important parts include multinomial logistic re-
gression (MLR), feed-forward (FFNN), simple and gated (GRU) recurrent neural networks
(RNN), and the steps during aggregating are as follows:

Step 1. According to the Möbius addition, the exponential mapping, the logarithmic
mapping, the isometric method of parallel transport of the Levi-Civita connection,
etc., it is possible to obtain a mapping relation from a vector v in a manifold to another
tangent space TxDn

c , v∈(TxDn
c ), as shown in Equation (13).

Pc
0→x(v) = logc

x(x⊕c expc
0(v)) =

λc
0

λc
x

v (13)
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⊕c is the Möbius addition in Dn
c , expx is the exponential map at x, λ is a smooth func-

tion.
Step 2. Embed two sentences using two different hyperbolic RNNs or GRUs. Naturally,
a simple RNN can be generalized to the hyperbolic space as follows:

ht+1 = φ⊗c(W ⊗c ht ⊕c U ⊗c xt ⊕c b), ht ∈ Dn
c , xt ∈ Dd

c (14)

W ∈ Mm,n(R), U ∈Mm,d(R), b ∈ Dm
c , φ is a pointwise nonlinearity, typically tanh,

sigmoid, ReLU, etc.
Under the adjusted GRU architecture, the update gate equation is adjusted as:

ht = ht−1 ⊕c diag(zt)⊗c (−ht−1 ⊕c h̃t) (15)

diag(x) denotes the diagonal matrix.
Step 3. Enter sentence embeddings with their hyperbolic or Euclidean squared dis-
tances into an FFNN according to their geometry. Here are some of the common
operations (Möbius version) defined in the hyperbolic environment:
As the map from Dn

c to Dm
c for f : Rn → Rm, there the Möbius version of f is defined

by:

f⊗c(x) := expc
0

(
f
(
logc

0(x)
))

(16)

Möbius matrix–vector multiplication: If there is a linear map M : Rn → Rm, identify
with its matrix representation, then ∀x ∈ Dn

c , if Mx 6= 0:

M⊗c(x) = (
1√
c
) tanh

(
||Mx||
||x|| tanh−1(

√
c||x||)

)
||Mx||
||x|| (17)

Step 4. Input an MLR (Euclidean or hyperbolic), using the cross-entropy loss on top.
To achieve multi-classification, multinomial logistic regression (MLR) (also known as
softmax regression) needs to be generalized to Poincaré Ball:

p(y = k | x) ∝ exp(sign(〈−pk ⊕c x, ak〉)
√

gc
pk
(ak, ak)dc(x, H̃c

ak ,pk
)), ∀x ∈ Dn

c (18)

If there is a K class, k∈ {1, ..., K}, pk ∈ Dn
c , ak ∈ TpkDn

c \{0}

2.2.5. Hyperbolic Graph Convolutions (HGCN)

Hyperbolic graph convolutional neural network (HGCN) [47] is a generalization of
inductive GCNs in hyperbolic geometry, which translates GCNs from Euclidean space
to hyperbolic geometric space to obtain smaller distortion embeddings. Then, through
a hyperbolic attention-based aggregation scheme, the hyperbolic embeddings are finally
learned in the graph structure and the concept of node hierarchy in the graph. For HGCN,
the steps during aggregating are as follows:

Step 1. Mapping from Euclidean to hyperbolic spaces. The input features are generally
Euclidean, and it is necessary to first map the input features to hyperbolic manifolds
by exp mapping.

x0,H = expK
o ((0, x0,E)) = (

√
k cosh(

||x0,E||2√
k

),
√

k sinh(
||x0,E||2√

k
)

x0,E

||x0,E||2
) (19)

x0,E is input Euclidean features, o := {
√

K, 0, ..., 0}, o is the north pole (origin) in Hd,K,
||v||L =

√
〈v, v〉L

Step 2. Multi-stack hyperbolic graph convolution layers. At each layer, the HGCN
takes the embeddings of the neighbors in the tangent space of the central node,
performs a hyperbolic linear transformation and aggregates them based on attention,
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and projects the result into a hyperbolic space with a different curvature. That is,
in the HGCN layer, it is necessary to pass, if there is a graph G = (γ, ε) and Euclidean
features (x0,E)i∈γ:

h`,H
i = (W` ⊗K`−1 x`−1,H

i )⊕K
`−1 b` (20)

y`,H
i = AGGK`−1(h`,H)i (21)

x`,H
i = σ⊗

K`−1,K`
(y`,H

i ) (22)

where
wij = SOFTMAXj∈N(i)(MLP(logK

o (xH
i )||logK

o (jH
i ))) (23)

AGGK(xK)i = expK
xH

i
( ∑

j∈N(i)
wijlogK

xH
i
(xH

j )) (24)

Step 3. Node attributes or links prediction. For link prediction, the probability scores
of the edges were calculated using the Fermi–Dirac decoder [58,59] (a generalization
of sigmoid):

p((i, j) ∈ ε | xL,H
i , xL,H

j ) = [e(d
KL
L (xL,H

i ,xL,H
j )2−r)/t

+ 1]−1 (25)

r and t are hyperparameters, dKL
L (·, ·) is the hyperbolic distance. The HGCN is then

trained by minimizing the cross-entropy loss using negative sampling.
For node classification, we use logarithmic mapping logKL

o (·) to map the output of
the last HGCN layer to the tangent space of the origin and then perform Euclidean
polynomial logistic regression. Finally, a link prediction regularization objective was
added to encourage embedding at the final layer, thus maintaining the structure of
the graph.

2.3. Experiments
2.3.1. Dataset Settings

We collect a large amount of PPI data from the well-acknowledged STRING database2.
Inspired by [39,57], we use the SHS27k and SHS148k datasets in this study and follow
the major seven protein–protein interaction types, i.e., including reaction, binding, post-
translational modifications (ptm), activation, inhibition, catalysis, and expression. We
subsequently extract seven subsets for each dataset and finally obtain fourteen PPI datasets.
For each dataset, we have the node features of each protein and confirm the edge connecting
different pairs of proteins. The node feature is fixed length that represents the amino acid
sequence. The edge is presented as the link between two protein ids. Based on the fourteen
datasets, for each dataset, we randomly divide these edges into 85/5/10% for the training
dataset, validation dataset, and test dataset.

2.3.2. Implementation Details

All the aforementioned methods are performed with Pytorch [60], Scikit-learn [61],
and GraphZoo [47,62]. The parameters that need to be optimized are shown in Table 2.
Most of these models share the same set of parameters. Specifically, all models employ
two stacked neural network layers, with the first layer reducing the feature dimension
from 50 to 16, the second layer maintaining the input feature dimension of 16, and the
output feature dimension also being 16. The learning rate is set to 0.01. The weight-decay
value is set to 0.001. ReLu is selected as the activation function. A drop-out rate of 0.4 is
implemented. Some parameters are different for different models. As the manifold for
hyperbolic networks, such as HNN and HGCN, we use the Poincare Ball. As the manifold
for graph neural networks, such as GCN and GAT, we employ the Euclidean. GAT has an
additional hyperparameter, i.e., the number of heads for multi-head attention, which we
set to 4. After 5000 training epochs, all of these models have reached their optimal state.
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The operation system we used is Ubuntu 20.04.1 LTS. All of these experiments are
conducted on the environment using one AMD EPYC 7502P CPU @ 3.35GHZ and an
NVIDIA RTX 3090 card with 24GB of memory. The remaining major library versions are as
follows: numpy == 1.23.1, scikit-learn == 1.1.2, torch == 1.12.1, networkx == 2.6.

Table 2. Number of parameters of different models.

Model # Parameters

NN 1088
GCN 1088
GAT 1120
HNN 1088

HGCN 1088

2.3.3. Evaluation Metrics

For the purpose of assessing the overall effectiveness of these prediction models,
we employ two widely used metrics, i.e., average precision (AP) and receiver operating
characteristic (ROC), for this classification prediction model performance evaluation. The
AP represents a precision–recall curve through a weighted average value of precisions.
The computation equation is shown in Equation (26). Here, Precisionn and Recalln refer
to the precision and recall, respectively. For the ROC, it is a graphical diagram of the
classification performance when the discrimination threshold changes. It can be obtained
through graphing the proportion of true positives out of the positives, with the fraction of
false positives out of the negatives. Overall, a greater AP and ROC value indicates a better
prediction performance.

AP = ∑
n
(Recalln − Recalln−1)× Precisionn (26)

3. Results and Discussion

We process the raw protein datasets into fourteen subset datasets and conduct com-
parative studies, respectively. The mentioned models are performed on these datasets.
After being fully trained, each graph neural network-based model is used on the testing
datasets and outputs the final protein–protein interactions prediction results.

3.1. Performance Comparison on SHS27k Dataset

We present the prediction performance comparison between these models in terms of
the ROC, AP, and runtime, leveraging the SHS27k dataset. In the following section, we will
elaborate on the experimental results.

3.1.1. ROC Comparison on SHS27k Dataset

We demonstrate the comparative study results in terms of the ROC, as shown in
Figure 5. The experiments are conducted on the following datasets, including the acti-
vation, binding, catalysis, expression, inhibition, post-translational modifications (ptm),
and reaction. From these figures, we can observe that the HGCN achieves the best ROC
performance compared with the other models in all the SHS27k subsets. This may be
caused by the curvature of these datasets. Therefore, the hyperbolic graph neural networks
can deal with these situations better. This claim can also be supported by the comparison
between the performance by the HNN and NN. As can be shown, the HNN consistently
obtains higher ROC results than the NN. In addition, we can also observe that the GCN
and GAT models obtain a comparable prediction performance in the ROC, significantly
better than the performance of both the traditional neural networks and hyperbolic neural
networks. This demonstrates the efficacy of the graph neural networks.
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Figure 5. ROC comparison between models for SHS27k.

3.1.2. AP Comparison on SHS27k Dataset

We also conducted comparative experiments on these datasets in terms of the AP
and present the experimental results in Figure 6. Based on these results, we can see that
the HGCN outperforms the other models in all the SHS27k subsets in regard to the AP
performance. Meanwhile, the HNN constantly performs better than the NN. These findings
support our aforementioned claims that the hyperbolic networks are particularly well-
suited for the protein-related datasets. The graph neural networks also demonstrate their
strong capabilities in this field, through the good performance by the GCN and GAT.
In addition, we also observe that these models obtain a better performance on the ptm
dataset than the other six datasets, while the worst AP performance is observed on the
expression dataset.
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Figure 6. AP comparison between models for SHS27k.

3.1.3. Runtime Comparison on SHS27k Dataset

In order to gain a better understanding of which one of these models is more effective,
we compare their runtime, utilizing various experiments. Figure 7 shows the experimental
findings. Here, note that the runtime is calculated in seconds. From these figures, we
can observe that the HGCN and GAT models demand more time for the experiment
implementation, while the neural networks require the least amount of runtime for the
model training and experiments in most of these datasets. The underlying reason may be
the feed-forward mechanism which has fewer parameters to be optimized.

3.2. Prediction Comparison on SHS148k Dataset

To verify the robustness of these models, we further conduct experiments on another
dataset, i.e., SHS148k. The prediction performance comparison among these models with
regard to the ROC, AP, and runtime will be described in the following section.
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Figure 7. Runtime comparison between models for SHS27k.

3.2.1. ROC Comparison on SHS148k Dataset

The ROC comparison performance on the SHS148k dataset is demonstrated in Figure 8.
From these figures, we can observe the following findings. First, similar to the performance
on the SHS27k dataset, the HGCN model achieves the best ROC performance compared
with the other models, and the hyperbolic neural network outperforms the traditional
three-layer neural network on the seven subsets. This provides consistent support for
our previous claims that the protein–protein interactions datasets are more suitable to
be modeled in the hyperbolic space rather than the Euclidean space. Second, the HGCN
achieves the better prediction performance on the SHS148k dataset than the SHS27k dataset,
including all the seven subsets. The reason behind this may be the larger amount of data
in SHS148k, which can help these neural networks-based models demonstrate better
learning capabilities.
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Figure 8. ROC comparison between models for SHS148k.

3.2.2. AP Comparison on SHS148k Dataset

The AP comparison performance is also carried out, and the experimental results are
shown in Figure 9. On the basis of these results, we can see that, similar to the performance
on SHS27k, the HGCN gains the best performance compared with the other models on all
the SHS148k subsets in regard to the AP metric. In addition, we observe that the HGCN can
achieve a comparable prediction performance on the activation, catalysis, inhibition, ptm,
and reaction subsets of SHS148k. Meanwhile, for the SHS27k dataset, this model obtains a
comparable performance on the catalysis, inhibition, and ptm subsets. It is possible that
the larger dataset helps bring a better prediction performance.
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Figure 9. AP comparison between models for SHS148k.

3.2.3. Runtime Comparison on SHS148k Dataset

For the SHS148k dataset, we also carry out the runtime performance comparison,
and the results are demonstrated in Figure 10. Based on these figures, we are able to deduce
that the execution of these models takes a significantly longer amount of time. For example,
for the experiments on the activation subsets, the HGCN demands 7 times the runtime on
SHS148k than on SHS27k. For the catalysis subset, the HGCN method needs a runtime of
323 s on the SHS148k dataset. This is over 15 times longer than the runtime required for
the SHS27k dataset, which requires only 22 s for the experiments to be carried out.
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Figure 10. Runtime comparison between models for SHS148k.

4. Conclusions

The study of the protein–protein interaction is of critical importance for further in-
vestigating protein function, gene regulation, immune recognition, disease mechanism,
and drug design. In this paper, we conducted a comparative study for protein–protein
interaction prediction using multiple graph neural network-based models, including the
GCN, GAT, HNN, and HGCN. The performances of the different graph neural networks for
PPI prediction are compared using fourteen datasets. The experimental results demonstrate
that graph neural network-based models are powerful for solving the protein–protein inter-
action prediction tasks, no matter the size of these PPI datasets, which are highly diverse,
with the number of protein interactions ranging from 1572 to 102,964. This indicates the
stability of the GNN model in solving the PPI problem; the HGCN generally outperforms
the other types of graph neural networks on all the datasets. It shows the promising
potential of the different graph neural networks for predicting protein–protein interactions.

There are still some limitations despite the thorough research results we obtained.
First, PPI is usually modeled as a link prediction task in graphs using GNNs. For PPI
prediction, most existing approaches use generic graph representation learners. Thus,
one open future task is to design graph models that focus on link prediction to solve PPI
problems, which is a promising idea. Second, the environment in which a protein resides,
such as different species or body tissues, has unique characteristics, which can be modeled
as global information in the graph. One of the future works will be combining global
information to perform the link prediction on graphs.



Molecules 2022, 27, 6135 17 of 19

Author Contributions: Conceptualization, B.Z. and H.Z.; methodology, H.Z., W.W., and J.J.; valida-
tion, H.Z.; formal analysis, W.W. and J.J.; data curation, H.Z.; writing—original draft preparation,
H.Z., W.W., and J.J.; writing—review and editing, B.Z.; visualization, H.Z., W.W., and J.J.; supervision,
B.Z. and Z.Z.; funding acquisition, B.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
No. 62102349).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the code and datasets used in this study can be found in this online
repository https://github.com/ZJUDataIntelligence/GNN-PPI) (accessed on 15 August 2022).

Acknowledgments: The authors would like to acknowledge the Supercomputing Center of Zhejiang
University City College for the support of the advanced computing resources.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PPI Protein–Protein Interactions
NN Neural Networks
GCN Graph Convolutional Neural Networks
GAT Graph Attention Networks
HNN Hyperbolic Neural Networks
HGCN Hyperbolic Graph Convolutions

References
1. Berggård, T.; Linse, S.; James, P. Methods for the detection and analysis of protein–protein interactions. Proteomics 2007,

7, 2833–2842. [CrossRef] [PubMed]
2. Zhang, Q.C.; Petrey, D.; Deng, L.; Qiang, L.; Shi, Y.; Thu, C.A.; Bisikirska, B.; Lefebvre, C.; Accili, D.; Hunter, T.; et al. Structure-

based prediction of protein–protein interactions on a genome-wide scale. Nature 2012, 490, 556–560. [CrossRef] [PubMed]
3. Wang, L.; You, Z.H.; Xia, S.X.; Liu, F.; Chen, X.; Yan, X.; Zhou, Y. Advancing the prediction accuracy of protein-protein

interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol.
2017, 418, 105–110. [CrossRef]

4. Wang, R.S.; Wang, Y.; Wu, L.Y.; Zhang, X.S.; Chen, L. Analysis on multi-domain cooperation for predicting protein-protein
interactions. BMC Bioinform. 2007, 8, 1–20. [CrossRef] [PubMed]

5. Skrabanek, L.; Saini, H.K.; Bader, G.D.; Enright, A.J. Computational prediction of protein–protein interactions. Mol. Biotechnol.
2008, 38, 1–17. [CrossRef]

6. Dong, J.; Zhao, M.; Liu, Y.; Su, Y.; Zeng, X. Deep learning in retrosynthesis planning: Datasets, models and tools. Brief. Bioinform.
2022, 23, bbab391. [CrossRef]

7. Ito, T.; Chiba, T.; Ozawa, R.; Yoshida, M.; Hattori, M.; Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein
interactome. Proc. Natl. Acad. Sci. USA 2001, 98, 4569–4574. [CrossRef]

8. Gavin, A.C.; Bösche, M.; Krause, R.; Grandi, P.; Marzioch, M.; Bauer, A.; Schultz, J.; Rick, J.M.; Michon, A.M.; Cruciat, C.M.; et al.
Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415, 141–147. [CrossRef]

9. Ho, Y.; Gruhler, A.; Heilbut, A.; Bader, G.D.; Moore, L.; Adams, S.L.; Millar, A.; Taylor, P.; Bennett, K.; Boutilier, K.; et al. Systematic
identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415, 180–183. [CrossRef]

10. Huang, H.; Alvarez, S.; Nusinow, D.A. Data on the identification of protein interactors with the Evening Complex and PCH1 in
Arabidopsis using tandem affinity purification and mass spectrometry (TAP–MS). Data Brief 2016, 8, 56–60. [CrossRef]

11. Foltman, M.; Sanchez-Diaz, A. Studying protein–protein interactions in budding yeast using co-immunoprecipitation. In Yeast
Cytokinesis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 239–256.

12. Mrowka, R.; Patzak, A.; Herzel, H. Is there a bias in proteome research? Genome Res. 2001, 11, 1971–1973. [CrossRef]
13. Melo, R.; Fieldhouse, R.; Melo, A.; Correia, J.D.; Cordeiro, M.N.D.; Gümüş, Z.H.; Costa, J.; Bonvin, A.M.; Moreira, I.S. A machine
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