Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing
3. Results and Discussion
3.1. Scientific Development of On-Line and In-Line Coupling
3.2. International Collaboration
3.3. Journals with More Publications and Most Cited Articles
3.4. Keyword Analysis
4. Innovative Extraction Techniques Suitable for On-Line Coupling
4.1. Supercritical Fluid Extraction
4.2. Ultrasound-Assisted Extraction
4.3. Microwave-Assisted Extraction
4.4. Pressurized Liquid and Subcritical Water Extraction
5. Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayanga-Torres, P.C.; Lachos-Perez, D.; Rezende, C.A.; Prado, J.M.; Ma, Z.; Tompsett, G.T.; Timko, M.T.; Forster-Carneiro, T. Valorization of Coffee Industry Residues by Subcritical Water Hydrolysis: Recovery of Sugars and Phenolic Compounds. J. Supercrit. Fluids 2017, 120, 75–85. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical Water Extraction of Flavanones from Defatted Orange Peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Tompsett, G.A.; Guerra, P.; Timko, M.T.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Sugars and Char Formation on Subcritical Water Hydrolysis of Sugarcane Straw. Bioresour. Technol. 2017, 243, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Keijer, T.; Bakker, V.; Slootweg, J.C. Circular Chemistry to Enable a Circular Economy. Nat. Chem. 2019, 11, 190–195. [Google Scholar] [CrossRef]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and Challenges in Lignocellulosic Biofuel Production Technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of Online Coupling of Sample Preparation Techniques with Liquid Chromatography. Anal. Chim. Acta 2014, 815, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mandal, V.; Tandey, R. A Critical Analysis of Publication Trends from 2005–2015 in Microwave Assisted Extraction of Botanicals: How Far We Have Come and the Road Ahead. TrAC Trends Anal. Chem. 2016, 82, 100–108. [Google Scholar] [CrossRef]
- Zoccali, M.; Donato, P.; Mondello, L. Recent Advances in the Coupling of Carbon Dioxide-Based Extraction and Separation Techniques. TrAC Trends Anal. Chem. 2019, 116, 158–165. [Google Scholar] [CrossRef]
- Frenzel, W.; Markeviciute, I. Membrane-Based Sample Preparation for Ion Chromatography—Techniques, Instrumental Configurations and Applications. J. Chromatogr. A 2017, 1479, 1–19. [Google Scholar] [CrossRef]
- Mejía-Carmona, K.; Jordan-Sinisterra, M.; Lanças, F.M. Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis. Beverages 2019, 5, 13. [Google Scholar] [CrossRef]
- Clavijo, S.; Avivar, J.; Suárez, R.; Cerdà, V. Analytical Strategies for Coupling Separation and Flow-Injection Techniques. TrAC Trends Anal. Chem. 2015, 67, 26–33. [Google Scholar] [CrossRef]
- Hyötyläinen, T.; Riekkola, M.-L. Approaches for On-Line Coupling of Extraction and Chromatography. Anal. Bioanal. Chem. 2004, 378, 1962–1981. [Google Scholar] [CrossRef] [PubMed]
- Borisova, D.R.; Statkus, M.A.; Tsysin, G.I.; Zolotov, Y.A. On-Line Coupling of Solid-Phase Extraction of Phenols on Porous Graphitic Carbon and LC Separation on C18 Silica Gel Column via Subcritical Water Desorption. Sep. Sci. Technol. 2016, 51, 1979–1985. [Google Scholar] [CrossRef]
- Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid–Phase Microextraction: A Review of Reviews. Microchem. J. 2019, 149, 103989. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, F.; Li, Y.; He, T.; Han, Y.; Wang, D.; Lin, Z.; Chen, S. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-Line Coupled with Supercritical Fluid Chromatography. Anal. Sci. 2018, 34, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.A.; Górecki, T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020, 25, 1719. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Lourenço-Lopes, C.; Otero, P.; Rodriguez, M.C.; Pereira, A.G.; Echave, J.; Soria-Lopez, A.; Chamorro, F.; Prieto, M.A.; Simal-Gandara, J. Application of Green Extraction Techniques for Natural Additives Production. In Natural Food Additives; Lourenço-Lopes, C., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 5; ISBN 978-1-83968-960-4. [Google Scholar]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green Extraction Techniques in Green Analytical Chemistry. TrAC Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Sammani, M.S.; Clavijo, S.; González, A.; Cerdà, V. Development of an On-Line Lab-on-Valve Micro-Solid Phase Extraction System Coupled to Liquid Chromatography for the Determination of Flavonoids in Citrus Juices. Anal. Chim. Acta 2019, 1082, 56–65. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, T. Recent Advances of Online Coupling of Sample Preparation Techniques with Ultra High Performance Liquid Chromatography and Supercritical Fluid Chromatography. J. Sep. Sci. 2019, 42, 226–242. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Camargo, A.d.P.; Parada-Alonso, F.; Ibáñez, E.; Cifuentes, A. Recent Applications of On-Line Supercritical Fluid Extraction Coupled to Advanced Analytical Techniques for Compounds Extraction and Identification. J. Sep. Sci 2019, 42, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Kandelbauer, A.; Rahe, M.; Kessler, R.W. Process Control and Quality Assurance-Industrial Perspectives. In Handbook of Biophotonics, Photonics in Pharmaceutics, Bioanalysis and Environmental Research; Popp, J., Tuchin, V., Chiou, A., Heinemann, S., Eds.; Wiley-VCH: Weinheim, Germany, 2012; Volume 3, p. 320. ISBN 978-3-527-41049-1. [Google Scholar]
- Trojanowicz, M. Advances in Flow Analysis. John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 3527318305. [Google Scholar]
- Minnich, C.; Hardy, S.; Krämer, S. Stopping the Babylonian Confusion: An Updated Nomenclature for Process Analyzers in PAT Applications. Chem. Ing. Tech. 2016, 88, 694–697. [Google Scholar] [CrossRef]
- Cindric, M.; Matysik, F.-M. Coupling Electrochemistry to Capillary Electrophoresis-Mass Spectrometry. TrAC Trends Anal. Chem. 2015, 70, 122–127. [Google Scholar] [CrossRef]
- Hyötyläinen, T. On-Line Coupling of Extraction with Gas Chromatography. J. Chromatogr. A 2008, 1186, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Prado, J.M.; Lachos-Perez, D.; Forster-Carneiro, T.; Rostagno, M.A. Sub- And Supercritical Water Hydrolysis of Agricultural and Food Industry Residues for the Production of Fermentable Sugars: A Review. Food Bioprod. Process. 2016, 98, 95–123. [Google Scholar] [CrossRef]
- Seroka-Stolka, O.; Ociepa-Kubicka, A. Green Logistics and Circular Economy. Transp. Res. Procedia 2019, 39, 471–479. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Romanelli, J.P.; Fujimoto, J.T.; Ferreira, M.D.; Milanez, D.H. Assessing Ecological Restoration as a Research Topic Using Bibliometric Indicators. Ecol. Eng. 2018, 120, 311–320. [Google Scholar] [CrossRef]
- Gonçalves, M.C.P.; Kieckbusch, T.G.; Perna, R.F.; Fujimoto, J.T.; Morales, S.A.V.; Romanelli, J.P. Trends on Enzyme Immobilization Researches Based on Bibliometric Analysis. Process Biochem. 2019, 76, 95–110. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Ram, S.; Paliwal, N. Assessment of Bradford Law of Scattering to Psoriasis Literature through Bibliometric Snapshot. DESIDOC J. Libr. Inf. Technol. 2014, 34, 46–56. [Google Scholar] [CrossRef]
- Okubo, Y. Bibliometric Indicators and Analysis of Research Systems; Methods and Examples: Paris, France, 1997. [Google Scholar]
- JCR Journal Citation Reports. Available online: https://jcr.clarivate.com/JCRLandingPageAction.action (accessed on 12 January 2022).
- van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Hennion, M.-C. Solid-Phase Extraction: Method Development, Sorbents, and Coupling with Liquid Chromatography. J. Chromatogr. A 1999, 856, 3–54. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. TrAC Trends Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Gu, Z.-Y.; Yang, C.-X.; Chang, N.; Yan, X.-P. Metal-Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation. Acc. Chem. Res. 2012, 45, 734–745. [Google Scholar] [CrossRef]
- Lang, Q.; Wai, C.M. Supercritical Fluid Extraction in Herbal and Natural Product Studies—A Practical Review. Talanta 2001, 53, 771–782. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical Fluid Extraction in Plant Essential and Volatile Oil Analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.N.; Fan, L.; Rieser, M.J.; El-Shourbagy, T.A. Recent Advances in High-Throughput Quantitative Bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 2007, 44, 342–355. [Google Scholar] [CrossRef]
- Packer, N.H.; Lawson, M.A.; Jardine, D.R.; Redmond, J.W. A General Approach to Desalting Oligosaccharides Released from Glycoproteins. Glycoconj. J. 1998, 15, 737–747. [Google Scholar] [CrossRef]
- Ye, X.; Kuklenyik, Z.; Needham, L.L.; Calafat, A.M. Automated On-Line Column-Switching HPLC-MS/MS Method with Peak Focusing for the Determination of Nine Environmental Phenols in Urine. Anal. Chem. 2005, 77, 5407–5413. [Google Scholar] [CrossRef]
- Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Tully, J.S.; Needham, L.L. Serum Concentrations of 11 Polyfluoroalkyl Compounds in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Sci. Technol. 2007, 41, 2237–2242. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, W.; Jing, P.; Chen, Y.; Zhan, F.; Shi, Y.; Li, T. Travel Mode Choice and Their Impacts on Environment—A Literature Review Based on Bibliometric and Content Analysis, 2000–2018. J. Clean. Prod. 2020, 249, 119391. [Google Scholar] [CrossRef]
- Chuang, K.-Y.; Huang, Y.-L.; Ho, Y.-S. A Bibliometric and Citation Analysis of Stroke-Related Research in Taiwan. Scientometrics 2007, 72, 201–212. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.; Song, W.; Xu, Y.; Zhang, X.; Zeng, Q.; Chen, H.; Ding, L.; Ren, N. High-Throughput Dynamic Microwave-Assisted Extraction on-Line Coupled with Solid-Phase Extraction for Analysis of Nicotine in Mushroom. Talanta 2011, 85, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Viganó, J.; Sanches, V.L.; de Souza Mesquita, L.M.; de Souza, M.C.; da Silva, L.C.; Chaves, J.O.; Forster-Carneiro, T.; Rostagno, M.A. Comprehensive Analysis of Phenolic Compounds from Natural Products: Integrating Sample Preparation and Analysis. Anal. Chim. Acta 2021, 1178, 338845. [Google Scholar] [CrossRef]
- Chen, L.; Ding, L.; Jin, H.; Song, D.; Zhang, H.; Li, J.; Zhang, K.; Wang, Y.; Zhang, H. The Determination of Organochlorine Pesticides Based on Dynamic Microwave-Assisted Extraction Coupled with on-Line Solid-Phase Extraction of High-Performance Liquid Chromatography. Anal. Chim. Acta 2007, 589, 239–246. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.d.P.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A. On-Line Coupling of Supercritical Fluid Extraction and Chromatographic Techniques. J. Sep. Sci. 2017, 40, 213–227. [Google Scholar] [CrossRef]
- Hyötyläinen, T. Principles, Developments and Applications of on-Line Coupling of Extraction with Chromatography. J. Chromatogr. A 2007, 1153, 14–28. [Google Scholar] [CrossRef]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Rigano, F.; Dugo, P.; Casale, M.; Mondello, L. Apocarotenoids Profiling in Different Capsicum Species. Food Chem. 2021, 334, 127595. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Hashi, Y.; Yamaki, S.; Guo, Y.; Zhang, L.; Li, H.; Lin, J.-M. Construction of On-Line Supercritical Fluid Extraction with Reverse Phase Liquid Chromatography–Tandem Mass Spectrometry for the Determination of Capsaicin. Chin. Chem. Lett. 2019, 30, 99–102. [Google Scholar] [CrossRef]
- Giuffrida, D.; Zoccali, M.; Arigò, A.; Cacciola, F.; Roa, C.O.; Dugo, P.; Mondello, L. Comparison of Different Analytical Techniques for the Analysis of Carotenoids in Tamarillo (Solanum Betaceum Cav.). Arch. Biochem. Biophys. 2018, 646, 161–167. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Jumaah, F.; Turner, C. Continuous Multicomponent Quantification during Supercritical Fluid Extraction Applied to Microalgae Using In-Line UV/Vis Absorption Spectroscopy and on-Line Evaporative Light Scattering Detection. J. Supercrit. Fluids 2018, 131, 157–165. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, J.; Zhong, Q.; Shen, L.; Yao, J.; Huang, T.; Zhou, T. Determination of Major Aromatic Constituents in Vanilla Using an On-Line Supercritical Fluid Extraction Coupled with Supercritical Fluid Chromatography. J. Sep. Sci. 2018, 41, 1600–1609. [Google Scholar] [CrossRef]
- Zoccali, M.; Giuffrida, D.; Dugo, P.; Mondello, L. Direct Online Extraction and Determination by Supercritical Fluid Extraction with Chromatography and Mass Spectrometry of Targeted Carotenoids from Red Habanero Peppers (Capsicum Chinense Jacq.). J. Sep. Sci. 2017, 40, 3905–3913. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Rodriguez-Meizoso, I.; Turner, C. Supercritical Fluid Extraction of Lipids from Linseed with On-Line Evaporative Light Scattering Detection. Anal. Chim. Acta. 2015, 853, 320–327. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kamezawa, K.; Iwaya, K.; Sato, Y.; Miyaji, T.; Bounoshita, M.; Tognarelli, D.; Saito, M. Analysis of Piperine in Peppers Using On-Line SFE-UHPLC with Photodiode Array Detection. Am. Lab. 2011, 43, 29–32. [Google Scholar]
- Zhang, J.; Zhang, L.; Duan, J.; Liang, Z.; Zhang, W.; Huo, Y.; Zhang, Y. On-Line Hyphenation of Supercritical Fluid Extraction and Two-Dimensional High Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometer for the Analysis of Ganoderma Lucidum. J. Sep. Sci. 2006, 29, 2514–2522. [Google Scholar] [CrossRef]
- Chen, T.-Q.; Zhao, X.-Y.; Wu, J.-Z.; Yu, D.-Y.; Wu, Y.-B. Supercritical Fluid CO2 Extraction, Simultaneous Determination of Components in Ultra-Fine Powder of Ganoderma Sinense by HPLC–ESI-MS Method. J. Taiwan Inst. Chem. Eng. 2011, 42, 428–434. [Google Scholar] [CrossRef]
- Juliasih, N.L.G.R.; Yuan, L.C.; Atsuta, Y.; Daimon, H. Development of Coupled Supercritical Fluid Extraction-High Performance Liquid Chromatography for Quinone Analysis in Activated Sludge. Sep. Sci. Technol. 2016, 51, 439–446. [Google Scholar] [CrossRef]
- Rissato, S.R.; Galhiane, M.S.; de Souza, A.G.; Apon, B.M. Development of a Supercritical Fluid Extraction Method for Simultaneous Determination of Organophosphorus, Organohalogen, Organonitrogen and Pyretroids Pesticides in Fruit and Vegetables and Its Comparison with a Conventional Method by GC-ECD and GC-MS. J. Braz. Chem. Soc. 2005, 16, 1038–1047. [Google Scholar] [CrossRef]
- Valverde, A.; Aguilera, A.; Rodriguez, M.; Brotons, M. Evaluation of a Multiresidue Method for Pesticides in Cereals Using Supercritical Fluid Extraction and Gas Chromatographic Detection. J. Environ. Sci. Health B 2009, 44, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-J.; Tsai, F.-J.; Chen, C.-Y.; Yang, T.C.-C.; Lee, M.-R. Determination of Additives in Cosmetics by Supercritical Fluid Extraction On-Line Headspace Solid-Phase Microextraction Combined with Gas Chromatography–Mass Spectrometry. Anal. Chim. Acta 2010, 668, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, R.; Fassauer, G.M.; Link, A. Supercritical Fluid Extraction (SFE) of Ketamine Metabolites from Dried Urine and on-Line Quantification by Supercritical Fluid Chromatography and Single Mass Detection (on-Line SFE–SFC–MS). J. Chromatogr. B 2018, 1076, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofrè, S.V.; Mondello, L. Carotenoids and Apocarotenoids Determination in Intact Human Blood Samples by Online Supercritical Fluid Extraction-Supercritical Fluid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta 2018, 1032, 40–47. [Google Scholar] [CrossRef]
- Wicker, A.P.; Carlton, D.D.; Tanaka, K.; Nishimura, M.; Chen, V.; Ogura, T.; Hedgepeth, W.; Schug, K.A. On-Line Supercritical Fluid Extraction—Supercritical Fluid Chromatography-Mass Spectrometry of Polycyclic Aromatic Hydrocarbons in Soil. J. Chromatogr. B 2018, 1086, 82–88. [Google Scholar] [CrossRef]
- Suzuki, M.; Nishiumi, S.; Kobayashi, T.; Sakai, A.; Iwata, Y.; Uchikata, T.; Izumi, Y.; Azuma, T.; Bamba, T.; Yoshida, M. Use of On-Line Supercritical Fluid Extraction-Supercritical Fluid Chromatography/Tandem Mass Spectrometry to Analyze Disease Biomarkers in Dried Serum Spots Compared with Serum Analysis Using Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 886–894. [Google Scholar] [CrossRef]
- You, J.; Gao, S.; Jin, H.; Li, W.; Zhang, H.; Yu, A. On-Line Continuous Flow Ultrasonic Extraction Coupled with High Performance Liquid Chromatographic Separation for Determination of the Flavonoids from Root of Scutellaria Baicalensis Georgi. J. Chromatogr. A 2010, 1217, 1875–1881. [Google Scholar] [CrossRef]
- Kivilompolo, M.; Hyötyläinen, T. On-Line Coupled Dynamic Sonication-Assisted Extraction-Liquid Chromatography for the Determination of Phenolic Acids in Lamiaceae Herbs. J. Chromatogr. A 2009, 1216, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jin, H.; Wang, L.; Sun, L.; Xu, H.; Ding, L.; Yu, A.; Zhang, H. Dynamic Ultrasound-Assisted Extraction Coupled on-Line with Solid Support Derivatization and High-Performance Liquid Chromatography for the Determination of Formaldehyde in Textiles. J. Chromatogr. A 2008, 1192, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Flores, C.; Cañizares-Macias, M.P. On-Line Dilution and Detection of Vainillin in Vanilla Extracts Obtained by Ultrasound. Food Chem. 2007, 105, 1201–1208. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Qi, Y.; Li, S.; Pan, Y.; Li, Y. Circulating Ultrasound-Assisted Extraction, Countercurrent Chromatography, and Liquid Chromatography for the Simultaneous Extraction, Isolation, and Analysis of the Constituents of Uncaria Tomentosa. J. Chromatogr. A 2015, 1388, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, R.; Liu, C.; Li, S.; Tsao, R. Development of Ultrasound-Assisted Mixture Extraction and Online Extraction Solution Concentration Coupled with Countercurrent Chromatography for the Preparation of Pure Phytochemicals from Phellinus Vaninii. J. Chromatogr. B 2021, 1171, 122619. [Google Scholar] [CrossRef] [PubMed]
- Falkova, M.; Alexovič, M.; Pushina, M.; Bulatov, A.; Moskvin, L.; Andruch, V. Fully Automated On-Line Flow-Batch Based Ultrasound-Assisted Surfactant-Mediated Extraction and Determination of Anthraquinones in Medicinal Plants. Microchem. J. 2014, 116, 98–106. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, C.; Fu, Q.; Hu, L.; Lou, Z.; Wang, H.; Tao, G. Application of Ionic Liquids in an Online Ultrasonic Assisted Extraction and Solid-Phase Trapping of Rhodiosin and Rhodionin from Rhodiola Rosea for UPLC. Chromatographia 2013, 76, 195–200. [Google Scholar] [CrossRef]
- Morales-Muñoz, S.; de Castro, M.D.L. Dynamic Ultrasound-Assisted Extraction of Colistin from Feeds with on-Line Pre-Column Derivatization and Liquid Chromatography-Fluorimetric Detection. J. Chromatogr. A 2005, 1066, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Li, S.; Hou, W.; Tsao, R. Development of Ultrasound-Assisted Centrifugal Extraction and Online Solvent Concentration Coupled with Parallel Countercurrent Chromatography for the Preparation of Purified Phytochemicals: Application to Lycium Ruthenicum. Ind. Crops Prod. 2021, 162, 113266. [Google Scholar] [CrossRef]
- Yebra-Biurrun, M.C.; Moreno-Cid, A.; Cancela-Pérez, S. Fast On-Line Ultrasound-Assisted Extraction Coupled to a Flow Injection-Atomic Absorption Spectrometric System for Zinc Determination in Meat Samples. Talanta 2005, 66, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Prado, L.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Microwave-Assisted Extraction of Emerging Pollutants in Environmental and Biological Samples before Chromatographic Determination. TrAC Trends Anal. Chem. 2015, 71, 119–143. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Ren, N. Recent Advances in Microwave-Assisted Extraction of Trace Organic Pollutants from Food and Environmental Samples. TrAC Trends Anal. Chem. 2016, 75, 197–208. [Google Scholar] [CrossRef]
- Gao, S.; Yu, W.; Yang, X.; Liu, Z.; Jia, Y.; Zhang, H. On-Line Ionic Liquid-Based Dynamic Microwave-Assisted Extraction-High Performance Liquid Chromatography for the Determination of Lipophilic Constituents in Root of Salvia Miltiorrhiza Bunge. J. Sep. Sci. 2012, 35, 2813–2821. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Xu, Y.; Zeng, Q.; Zhang, X.; Zhao, Q.; Ding, L. Dynamic Microwave-Assisted Extraction Coupled on-Line with Clean-up for Determination of Caffeine in Tea. LWT—Food Sci. Technol. 2011, 44, 1490–1495. [Google Scholar] [CrossRef]
- Chen, L.; Jin, H.; Ding, L.; Zhang, H.; Wang, X.; Wang, Z.; Li, J.; Qu, C.; Wang, Y.; Zhang, H. On-Line Coupling of Dynamic Microwave-Assisted Extraction with High-Performance Liquid Chromatography for Determination of Andrographolide and Dehydroandrographolide in Andrographis Paniculata Nees. J. Chromatogr. A 2007, 1140, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ding, L.; Zhang, H.; Li, J.; Wang, Y.; Wang, X.; Qu, C.; Zhang, H. Dynamic Microwave-Assisted Extraction Coupled with on-Line Spectrophotometric Determination of Safflower Yellow in Flos Carthami. Anal. Chim. Acta 2006, 580, 75–82. [Google Scholar] [CrossRef]
- Tong, X.; Xiao, X.; Li, G. On-Line Coupling of Dynamic Microwave-Assisted Extraction with High-Speed Counter-Current Chromatography for Continuous Isolation of Nevadensin from Lyeicnotus Pauciflorus Maxim. J. Chromatogr. B 2011, 879, 2397–2402. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Wang, J.-X.; Wang, D.; Foster, N.R.; Chen, J.-F. Subcritical Water Processing for Nanopharmaceuticals. Chem. Eng. Process. 2019, 140, 36–42. [Google Scholar] [CrossRef]
- Thiruvenkadam, S.; Izhar, S.; Yoshida, H.; Danquah, M.K.; Harun, R. Process Application of Subcritical Water Extraction (SWE) for Algal Bio-Products and Biofuels Production. Appl. Energy 2015, 154, 815–828. [Google Scholar] [CrossRef]
- Souza, M.C.; Silva, L.C.; Chaves, J.O.; Salvador, M.P.; Sanches, V.L.; da Cunha, D.T.; Foster Carneiro, T.; Rostagno, M.A. Simultaneous Extraction and Separation of Compounds from Mate (Ilex Paraguariensis) Leaves by Pressurized Liquid Extraction Coupled with Solid-Phase Extraction and in-Line UV Detection. Food Chem. Mol. Sci. 2021, 2, 100008. [Google Scholar] [CrossRef]
- Taylor, B.M.; Thurbide, K.B. On-Line Coupling of a Micro-Pressurized Liquid Extraction Method to Liquid Chromatography Via Solid-Phase Trapping. Chromatographia 2020, 83, 1319–1327. [Google Scholar] [CrossRef]
- Souza, M.C.; Santos, M.P.; Sumere, B.R.; Silva, L.C.; Cunha, D.T.; Martínez, J.; Barbero, G.F.; Rostagno, M.A. Isolation of Gallic Acid, Caffeine and Flavonols from Black Tea by on-Line Coupling of Pressurized Liquid Extraction with an Adsorbent for the Production of Functional Bakery Products. LWT 2020, 117, 108661. [Google Scholar] [CrossRef]
- Qian, Z.-M.; Chen, L.; Wu, M.-Q.; Li, D.-Q. Rapid Screening and Characterization of Natural Antioxidants in Polygonum Viviparum by an On-Line System Integrating the Pressurised Liquid Micro-Extraction, HPLC-DAD-QTOF-MS/MS Analysis and Antioxidant Assay. J. Chromatogr. B 2020, 1137, 121926. [Google Scholar] [CrossRef]
- Song, Q.; Li, J.; Liu, X.; Zhang, Y.; Guo, L.; Jiang, Y.; Song, Y.; Tu, P. Home-Made Online Hyphenation of Pressurized Liquid Extraction, Turbulent Flow Chromatography, and High Performance Liquid Chromatography, Cistanche Deserticola as a Case Study. J. Chromatogr. A 2016, 1438, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, Y.; Gan, Y.; Eaton, C.D.; He, P.; Jones, A.D. On-Line Coupling of Subcritical Water Extraction with High-Performance Liquid Chromatography via Solid-Phase Trapping. J. Chromatogr. A 2000, 873, 175–184. [Google Scholar] [CrossRef]
- Crescenzi, C.; di Corcia, A.; Nazzari, M.; Samperi, R. Hot Phosphate-Buffered Water Extraction Coupled on-Line with Liquid Chromatography/Mass Spectrometry for Analyzing Contaminants in Soil. Anal. Chem. 2000, 72, 3050–3055. [Google Scholar] [CrossRef] [PubMed]
- Hyötyläinen, T.; Andersson, T.; Hartonen, K.; Kuosmanen, K.; Riekkola, M.-L. Pressurized Hot Water Extraction Coupled On-Line with LC−GC: Determination of Polyaromatic Hydrocarbons in Sediment. Anal. Chem. 2000, 72, 3070–3076. [Google Scholar] [CrossRef] [PubMed]
- Kuosmanen, K.; Hyötyläinen, T.; Hartonen, K.; Riekkola, M.-L. Analysis of Polycyclic Aromatic Hydrocarbons in Soil and Sediment with On-Line Coupled Pressurised Hot Water Extraction, Hollow Fibre Microporous Membrane Liquid-Liquid Extraction and Gas Chromatography. Analyst 2003, 128, 434–439. [Google Scholar] [CrossRef]
- Borisova, D.R.; Goncharova, E.N.; Statkus, M.A.; Tsisin, G.I. On-Line Solid-Phase Extraction and HPLC Determination of Phthalic Acid Monoesters Including Desorption with Subcritical Water. Mosc. Univ. Chem. Bull. 2015, 70, 237–241. [Google Scholar] [CrossRef]
- Murakami, T.; Kawasaki, T.; Takemura, A.; Fukutsu, N.; Kishi, N.; Kusu, F. Identification of Degradation Products in Loxoprofen Sodium Adhesive Tapes by Liquid Chromatography–Mass Spectrometry and Dynamic Pressurized Liquid Extraction–Solid-Phase Extraction Coupled to Liquid Chromatography–Nuclear Magnetic Resonance Spectroscopy. J. Chromatogr. A 2008, 1208, 164–174. [Google Scholar] [CrossRef]
- Morales-Muñoz, S.; Luque-García, J.L.; Luque de Castro, M.D. Static Extraction with Modified Pressurized Liquid and On-Line Fluorescence Monitoring: Independent Matrix Approach for the Removal of Polycyclic Aromatic Hydrocarbons from Environmental Solid Samples. J. Chromatogr. A 2002, 978, 49–57. [Google Scholar] [CrossRef]
Rank | Journals | Country | Publishing Company | Impact Factor | Records | % of 2353 |
---|---|---|---|---|---|---|
1 | Journal of Chromatography A | Netherlands | Elsevier | 4.759 | 374 | 15.895 |
2 | Talanta | England | Elsevier | 6.057 | 145 | 6.162 |
3 | Journal of Chromatography B | Netherlands | Elsevier | 3.205 | 144 | 6.120 |
4 | Analytica Chimica Acta | Netherlands | Elsevier | 6.558 | 133 | 5.652 |
5 | Analytical Chemistry | USA | ACS Publications | 6.986 | 88 | 3.740 |
6 | Analytical and Bioanalytical Chemistry | Germany | Springer | 4.157 | 77 | 3.272 |
6 | Chromatographia | Germany | Springer | 2.044 | 77 | 3.272 |
8 | Journal of Pharmaceutical and Biomedical Analysis | Netherlands | Elsevier | 3.935 | 72 | 3.060 |
9 | Electrophoresis | Germany | WILEY | 3.535 | 66 | 2.805 |
10 | Journal of Separation Science | Germany | WILEY | 3.645 | 61 | 2.592 |
Rank | Title | Journals | Citations | Article Type | References |
---|---|---|---|---|---|
1 | Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis | Chemosphere | 1424 | Review article | [37] |
2 | Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography | Journal of Chromatography A | 835 | Review article | [38] |
3 | Green Analytical Chemistry | Trends in Analytical Chemistry | 594 | Review article | [39] |
4 | Metal-Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation | Accounts of Chemical Research | 548 | Review article | [40] |
5 | Supercritical fluid extraction in herbal and natural product studies—a practical review | Talanta | 434 | Review article | [41] |
6 | Supercritical fluid extraction in plant essential and volatile oil analysis | Journal of Chromatography A | 396 | Review article | [42] |
7 | Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS | Journal of Pharmaceutical and Biomedical Analysis | 373 | Review article | [43] |
8 | A general approach to desalting oligosaccharides released from glycoproteins | Glycoconjugate Journal | 365 | Research article | [44] |
9 | Automated online column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine | Analytical Chemistry | 324 | Research article | [45] |
10 | Serum concentrations of 11 polyfluoroalkyl compounds in the US population: Data from the National Health and Nutrition Examination Survey (NHANES) 1999–2000 | Environmental Science & Technology | 317 | Research article | [46] |
Rank | Author Keywords | Occurrences | Rank | Keywords Plus | Occurrences |
---|---|---|---|---|---|
1 | Solid-phase extraction | 266 | 1 | Solid-phase extraction | 671 |
2 | On-line solid-phase extraction | 159 | 2 | High performance liquid-chromatography | 414 |
3 | Mass spectrometry | 117 | 3 | Liquid-chromatography | 286 |
4 | Capillary electrophoresis | 102 | 4 | Mass-spectrometry | 275 |
5 | Pesticides | 96 | 5 | Tandem mass-spectrometry | 214 |
6 | Liquid chromatography | 87 | 6 | Samples | 213 |
7 | On-line SPE | 82 | 7 | Gas-Chromatography | 209 |
8 | LC-MS/MS | 77 | 8 | Separation | 193 |
8 | HPLC | 77 | 9 | Water | 172 |
8 | Supercritical fluid extraction | 77 | 10 | Metabolites | 144 |
8 | Water analysis | 77 | 11 | Chromatography | 135 |
12 | Sample preparation | 74 | 12 | Human plasma | 134 |
13 | Column Switching | 63 | 13 | Urine | 114 |
14 | Urine | 62 | 14 | Preconcentration | 112 |
15 | High performance liquid chromatography | 57 | 15 | Microextraction | 111 |
16 | Environmental analysis | 54 | 16 | Pesticides | 106 |
17 | Automation | 45 | 17 | Polycyclic aromatic-hydrocarbons | 103 |
17 | Column liquid chromatography | 45 | 18 | plasma | 102 |
19 | On-line preconcentration | 42 | 19 | Identification | 100 |
20 | Preconcentration | 40 | 20 | HPLC | 97 |
21 | Gas chromatography | 36 | 21 | Extraction | 88 |
22 | Water | 35 | 22 | Sample preparation | 85 |
23 | LC-MS | 32 | 23 | Capillary-electrophoresis | 83 |
24 | On-line extraction | 31 | 23 | Quantification | 83 |
25 | Water samples | 30 | 25 | Supercritical-fluid extraction | 82 |
26 | Extraction | 29 | 26 | Water samples | 74 |
26 | Plasma | 29 | 26 | Waste-water | 74 |
26 | Monolithic column | 29 | 28 | On-line | 72 |
29 | Human plasma | 28 | 28 | Residues | 72 |
29 | Tandem mass spectrometry | 28 | 30 | drugs | 70 |
Sample | Compounds of Interest | Coupled Techniques | Solvents | SFE Conditions (F; P; T) | SFE Method (Static Mode) | SFE Method (Dynamic Mode) | SFC/LC Method | Detector | References |
---|---|---|---|---|---|---|---|---|---|
Chilli Peppers | Carotenoids and apocarotenoids | SFE-SFC- QqQ/MS | CO2 (A) CH3OH (B) | 2.0 mL/min; 150 bars; 80 °C | 0–3 min, 10% B | 3–4 min, 0% B | 4–6 min, 0% B; 6–21 min, 0–80% B; 21–22 min, 80–100% B; 22–24, 100% B | APCI-MS | [54] |
Green, yellow, and red bell peppers | Capsaicin | SFE-SPE-LC-MS | CO2 (A) CH3OH (B) | 5.0 mL/min; 15 MPa; 50 °C | 0–4 min, 5% B | 4–8 min, 5% B | 0 min, 45% B; 0–10 min, 80% B; 10–12 min, 100% B; 12–13.5 min, 100% B; 15.5–13.6 min, 45% B | ESI-MS | [55] |
Yellow tamarillo fruits | Apocarotenoids and carotenoids | SFE-SFC- QqQ/MS | CO2 (A) CH3OH (B) | 2.0 mL/min; 150 bars; 80 °C | 0–3 min, 5% B | 3–4 min, 10% B | 4–6 min, 0% B; 6–14 min, 0–40% B; 14–16 min, 40% B | APCI-MS | [56] |
Chaenomelis Fructus | Oleanoic acid and ursolic acid | SFE-SFC | CO2 (A) CH3OH (B) | 5.0 mL/min; 15 MPa; 35 °C | 0–1 min, 20% B | 1–8 min, 5% B | 0–10 min, 5–10% B; 10–14 min, 10% B; 14–16 min, 10–40% B; 16–20 min, 40% B | PDA | [16] |
Microalgae | Carotenoids, chlorophyll A, ergosterol, and total lipids | SFE-UV/Vis- ELSD | CO2 (A) CH3CH2OH (B) | 1.5 mL/min; 15–30 MPa; 40–60 °C | - | - | - | UV/Vis ELSD | [57] |
Vanilla beans | Aromatic constituents | SFE-SFC | CO2 (A) CH3OH (B) | 2.0 mL/min 10–20 MPa; 35–55 °C | - | - | 0–13 min, 2–10% B; 13–17 min, 10–15% B; 17–18 min, 15% B | PDA | [58] |
Red Habanero peppers | Carotenoids | SFE-SFC- QqQ/MS | CO2 (A) CH3OH (B) | 3.0 mL/min; 150 bars; 40–80 °C | 0–3 min, 10% B | 3–4 min, 0% B | 4–6 min, 0% B; 6–14 min, 0–40% B; 14–16 min, 40% B | APCI-MS | [59] |
Linseed | Lipids | SFE–ELSD | CO2 (A) CH3CH2OH (B) | 1.5 mL/min 30 MPa; 80 °C | - | - | - | ELSD | [60] |
Sample | Compounds of Interest | Coupled Techniques | Solvents for UAE | Mobile Phase for LC | UAE Conditions (F; P; T) | Reference |
---|---|---|---|---|---|---|
Porous fungus, P. vaninii | Phytochemicals | UAE and on-line extraction. | n-Hexane–ethyl acetate–acetonitrile–water (5.5:2.5:5.0:0.4, v/v/v) was used as the solvent system | elution procedure: 0–20 min, 45%–80% (acetonitrile), 65%–10% (water); flow rate: 0.4 mL/min | 500 W, 170 mL/min 40 °C | [77] |
Frangula alnus (cortex) and Rubia tinctorum (roots and rhizomes) | Anthraquinones | UAE + spectrophotometric | Triton X-100 | Non-applicable | 325 W, 35 kHz at 75 °C for 10 min | [78] |
Rhodiola rosea | Rhodiosin | UAE+SPE coupled UPLC | Ethanol:water (95%) | ACN-formic acid (0.1%, v/v): 0–8 min, 5–40%, acetonitrile; 8–15 min, 40–100% acetonitrile. The flow rate of 0.3 mL/min | 60 kHz, 360 W on the scale of 0–100 | [79] |
Scutellaria baicalensis Georgi | Flavonoids | UAE-HPLC | Ethanol:water (60%) | ACN-water with 0.1% phosphoric acid. The gradient conditions was 0–15 min, 20–30% ACN; 16–20 min, 30–50% ACN; 21–28 min, 50–20% CAN. The flow rate of 1 mL/min | 40 kHz, 150 W | [72] |
basil (Ocimum basilicum L.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), spearmint (Mentha spicata L.) and thyme (Thymus vulgaris). | Phenolic acids | UAE+SPE coupled on HPLC | Ethanol:water (60%) | 0 min 5% methanol, 2 min 5% methanol, 6 min 25% methanol, 13 min 40% methanol, 26 min 40% methanol. The flow rate of 1 mL/min | Flow rate 0.25 mL/min, temperature 45 °C and extraction time 15 min. | [73] |
Textile fragments | Formaldehyde | UAE coupled on -HPLC | Water | 4 mmol L−1 sodium dihydrogen phosphate in 50% ACN at a flow rate of 1.0 mL min−1. | 40 kHz. 100 and 800 W, 80 °C. | [74] |
Colistin in feed. | colistin A and B | UAE coupled with HPLC | - | - | - | [80] |
Sample | Compounds of Interest | Coupled Techniques | Solvents | MAE Conditions (F; P; T) | LC/GC Method | Detector | Reference |
---|---|---|---|---|---|---|---|
Salvia miltiorrhiza Bunge | Lipophilic constituents (tanshin-one I, cryptotanshinone, and tanshinone IIA) | DMAE-HPLC | [C6MIM]Cl aqueous solution (A), Ethanol (B) | 1.6 mL/min; 180 W | methanol-water (v/v, 81/19) and isocratic elution; 0.5 mL min−1; at 40 °C and injection volume of 20 μL. | Photodiode-array detector (PAD) | [85] |
Mushroom | Nicotine | HTDMAE- SPE | Water, elution solvent (methanol–ammonia, 95:5, v/v) | 2.0 mL/min; 1000 W | 20 mmol L−1 ammonium acetate solution (pH = 3) and methanol (80:20, v/v)); 1.0 mL min−1, at 30 °C and injection volume of 20 μL. | UV detector monitoring at 260 nm | [49] |
Tea | Caffeine | DMAE coupled on-line with clean-up | Ethanol | 1.0 mL/min; 70 W | 30% methanol and 70% water; 1.0 mL min−1. | UV detector monitoring at 270 nm | [86] |
Andrographis paniculata Nees | Andrographolide and dehydroandrographolide | DMAE-HPLC | Methanol | 1.0 mL/min; 80 W | 65% aqueous methanol; 1.0 mL min−1 and injection volume of 20 μL. | Photodiode-array detector (PAD) | [87] |
Grain samples, including wheat, rice, corn and bean | Organochlorine pesticides | DMAE–SPE–HPLC | 95% acetonitrile | 1.0 mL/min; 80 W | Mobile phase of 75% ACN aqueous solution; 1.0 mL min−1. | --- | [51] |
Flos Carthami | Safflower yellow | MAE-UV | 60% methanol | 1.0 mL/min; 80 W | --- | --- | [88] |
Sample | Compounds of Interest | Coupled Techniques | PLE Conditions (F; P; T) | Solvents | LC Method | Detector | Reference |
---|---|---|---|---|---|---|---|
Yerba mate (Ilex paraguariensis) | Alkaloids, phenolic acids and flavonoids | PLE-SPE- HPLC | 2.0 mL/min; 100 bars; 40–80 °C | H2O (A) CH3CN (B) | 1 min, 10% B; 2 min, 20% B; 4 min, 30% B; 5 min, 90% B; 8 min, 10% B | UV-Vis | [92] |
Strawberry and apple | Herbicide 2-(3-chlorophenoxy) propionic acid (3-CPA) | µPLE-SPE- HPLC | 1.0 mL/min; 30 bars; 150–160 °C | H2O (A) CH3CN (B) | 70% A/30% B/0.1% Formic Acid | UV-Vis | [93] |
Black tea | Gallic ccid, caffeine, and flavonols | PLE-SPE- HPLC | 2.0 mL/min; 100 bars; 40–80 °C | H2O (A) CH3CN (B) | 0 min, (95% A); 1 min, (95% A); 3 min, (90% A); 7 min, (87.5% A); 9 min, (85% A); 10 min, (82% A); 18 min, (77% A); 20 min, (0% A); 22 min, (0% A); 23 min, (95% A) | UV-Vis | [94] |
Dried root (Polygonum viviparum) | Antioxidants | PLE-HPLC | 1.0 mL/min; 70 °C | H2O (A) CH3CN (B) | 0–5 min, 0% B; 5–6 min, 5% B; 6–21 min, 15% B; 21–30 min, 20% B; 30–35 min, 80% B; 35–37 min, 0% B | PDA | [95] |
Ginseng of the desert (Cistanche deserticola) | Primary phenylethanoid glycosides | PLE–TFC–HPLC | 2.5 mL/min; 13 MPa; 70 °C | H2O (A) CH3CN (B) | 0–3 min, 10% B; 3–10 min, 10–20% B; 10–25 min, 20–30% B; 25–35 min, 30–45% B; 35–40 min, 45–60% B; 40–45 min, 60–90% B; 45–48 min, 90% B; 48, 1–60 min, 10% B | PDA | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel-Silva, F.W.; Lachos-Perez, D.; Buller, L.S.; Sganzerla, W.G.; Pérez, M.; Rostagno, M.A.; Forster-Carneiro, T. Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review. Molecules 2022, 27, 6272. https://doi.org/10.3390/molecules27196272
Maciel-Silva FW, Lachos-Perez D, Buller LS, Sganzerla WG, Pérez M, Rostagno MA, Forster-Carneiro T. Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review. Molecules. 2022; 27(19):6272. https://doi.org/10.3390/molecules27196272
Chicago/Turabian StyleMaciel-Silva, Francisco W., Daniel Lachos-Perez, Luz Selene Buller, William G. Sganzerla, Montserrat Pérez, Mauricio A. Rostagno, and Tania Forster-Carneiro. 2022. "Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review" Molecules 27, no. 19: 6272. https://doi.org/10.3390/molecules27196272
APA StyleMaciel-Silva, F. W., Lachos-Perez, D., Buller, L. S., Sganzerla, W. G., Pérez, M., Rostagno, M. A., & Forster-Carneiro, T. (2022). Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review. Molecules, 27(19), 6272. https://doi.org/10.3390/molecules27196272