Synthesis of Novel Pyrazole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Greenhouse Herbicidal Activity Assays
3. Materials and Methods
3.1. Instrumentation
3.2. Synthesis
3.2.1. Synthesis of Intermediates A (4a–4e)
3.2.2. Synthesis of Intermediate B
3.2.3. General Approach to the Synthesis of Compounds 6a–6e and 7a–7e
3.3. Herbicidal Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Samples Availability
References
- Masumoto, E.; Kashige, N.; Nagabuchi, H.; Okabe-Nakahara, F.; Maruoka, H. Synthesis and evaluation for biological activities of 2-thio-acylated thiazoles containing pyrazole moiety. Heterocycles 2019, 98, 1736–1746. [Google Scholar] [CrossRef]
- Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules 2018, 23, 134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Liu, S.H.; Li, Y.H.; Song, H.B.; Wang, Q.M. Synthesis and biological evaluation of arylhydrazinocyanoacrylates and N-aryl pyrazolecarboxylates. Bioorg. Med. Chem. Lett. 2009, 19, 2953–2956. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, D.-W.; Yang, W.-C.; Chen, Q.; Yang, G.-F. Advances in research on 4-hydroxyphenylpyruvate dioxygenase (HPPD) structure and pyrazole-containing herbicides. Chin. J. Org. Chem. 2017, 37, 2895–2904. [Google Scholar] [CrossRef]
- Bizikova, P.; Linder, K.E.; Olivry, T. Fipronil-amitraz–S-methoprene-triggered pemphigus foliaceus in 21 dogs: Clinical, histological and immunological characteristics. Vet. Dermatol. 2014, 25, 103–113. [Google Scholar] [CrossRef]
- Aloisi, A.; Franchet, A.; Ferrandon, D.; Bianco, A.; Menard-Moyon, C. Fluorescent-Fipronil: Design and synthesis of a stable conjugate. Bioorg. Med. Chem. Lett. 2018, 28, 2631. [Google Scholar] [CrossRef] [PubMed]
- Du, S.-J.; Li, Z.-H.; Tian, Z.-M.; Xu, L. Synthesis, antifungal activity and QSAR of novel pyrazole amides as succinate dehydrogenase inhibitors. Heterocycles 2018, 96, 74–85. [Google Scholar] [CrossRef]
- Lei, P.; Zhang, X.-B.; Xu, Y.; Xu, G.-F.; Liu, X.-L.; Yang, X.-L.; Zhang, X.-H.; Ling, Y. Synthesis and fungicidal activity of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline. Chem. Cent. J. 2016, 10, 40–45. [Google Scholar] [CrossRef]
- Zhong, L.-K.; Jiang, T.; Zhang, F.; Fu, Q.; Liu, X.-H.; Xu, T.-M.; Ding, C.-R.; Chen, J.; Yuan, J.; Tan, C.-X. Synthesis and insecticidal activity of 3-arylisoxazoline-pyrazole-5-carboxamide derivatives. Chin. J. Org. Chem. 2019, 39, 2655–2662. [Google Scholar] [CrossRef]
- Song, H.-J.; Liu, Y.-X.; Xiong, L.-X.; Li, Y.-Q.; Yang, N.; Wang, Q.-M. Design, synthesis, and insecticidal evaluation of new pyrazole derivatives containing imine, oxime ether, oxime ester, and dihydroisoxazoline groups based on the inhibitor binding pocket of respiratory complex I. J. Agric. Food. Chem. 2013, 61, 8730–8736. [Google Scholar] [CrossRef]
- Qu, S.-H.; Zhu, L.-F.; Wang, Q.; Wang, X.-L. Design, synthesis and insecticidal activity of 3-arylisoxazoline-N-alkylpyrazole-5-carboxamide derivatives against Tetranychus urticae Koch. Heterocycles 2022, 104, 511–523. [Google Scholar] [CrossRef]
- Ren, Z.-L.; Zhang, J.; Li, H.-D.; Chu, M.-J.; Zhang, L.-S.; Yao, X.-K.; Xia, Y.; Lv, X.-H.; Cao, H.-Q. Design, synthesis and biological evaluation of α-aminophosphonate derivatives containing a pyrazole moiety. Chem. Pharm. Bull. 2016, 64, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Dong, J.; Lin, H.-Y.; Wang, M.-Y.; Li, X.-K.; Zheng, B.-F.; Chen, Q.; Hao, G.-F.; Yang, W.-C.; Yang, G.-F. Pyrazole-isoindoline-1,3-dione hybrid: A promising scaffold for 4-hydroxyphenylpyruvate dioxygenase inhibitors. J. Agric. Food Chem. 2019, 67, 10844–10852. [Google Scholar] [CrossRef]
- Mu, J.-X.; Zhai, Z.-W.; Tan, C.-X.; Weng, J.-Q.; Wu, H.-K.; Duke, S.O.; Zhang, Y.-G.; Liu, X.-H. Synthesis and herbicidal activity of 1,2,4-triazole derivatives containing a pyrazole moiety. J. Heterocycl. Chem. 2019, 56, 968–971. [Google Scholar] [CrossRef]
- Fu, Q.; Kang, S.-J.; Zhong, L.-K.; Chen, J.; Tan, C.-X.; Weng, J.-Q.; Xu, T.-M.; Liu, X.-H. Synthesis and herbicidal activity of new pyrazole ketone derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 200–205. [Google Scholar] [CrossRef]
- Wu, H.; Feng, J.-T.; Lin, K.-C.; Zhang, X. Synthesis and Herbicidal activity of substituted pyrazole isothiocyanates. Molecules 2012, 17, 12187–12196. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, M.-X.; Zhang, D.; Hou, Y.-W.; Gao, S.; Zhao, L.-X.; Ye, F. Design, synthesis, and herbicidal activity of pyrazole benzophenone derivatives. RSC Adv. 2017, 7, 6858–46865. [Google Scholar] [CrossRef]
- Fu, Q.; Cai, P.-P.; Cheng, L.; Zhong, L.-K.; Tan, C.-X.; Shen, Z.-H.; Han, L.; Xu, T.-M.; Liu, X.-H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci. 2020, 76, 868–879. [Google Scholar] [CrossRef]
- Goodrich, L.V.; Butts-Wilmsmeyer, C.J.; Bollero, G.A.; Riechers, D.E. Sequential pyroxasulfone applications with fluxofenim reduce sorghum injury and increase weed control. Agron. J. 2018, 110, 1915–1924. [Google Scholar] [CrossRef]
- Schaefer, P.; Hampreche, G.; Puhl, M.; Westphalen, K.O.; Zagaret, C. Synthesis and herbicidal activity of phenylpyridines—A new lead. Chim. Int. J. Chem. 2003, 57, 715–719. [Google Scholar] [CrossRef]
- Schaefer, P.; Hampreche, G.; Heistracher, E.; Koenig, H.; Klintz, R.; Muenster, P.; Rang, H.; Westphalen, K.O.; Gerber, M.; Walter, H. Preparation of Substituted 2-Phenylpyriden Herbicides. DE Patent DE4323916A1, 19 January 1995. [Google Scholar]
- Xie, Y.; Chi, H.W.; Guan, A.Y.; Liu, C.L.; Ma, H.J.; Cui, D.L. Design, synthesis, and herbicidal activity of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives. J. Agric. Food Chem. 2014, 62, 12491–12496. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Peng, W.; Ding, F.; Liu, S.J.; Ma, H.J.; Liu, C.L. Quantitative structure-activity relationship (QSAR) directed the discovery of 3-(pyridin-2-yl)benzenesulfonamide derivatives as novel herbicidal agents. Pest Manag. Sci. 2017, 74, 189–199. [Google Scholar] [CrossRef]
- Xie, Y.; Chi, H.W.; Guan, A.Y.; Liu, C.L.; Ma, H.J.; Cui, D.L. Synthesis and evaluation of substituted 3-(pyridin-2-yl)-benzenesulfonamide derivatives as potent herbicidal agents. Bioorg. Med. Chem. 2016, 24, 428–434. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Mao, D.J.; Wang, W.W.; Du, X.H. Kresoxim-methyl derivatives: Synthesis and herbicidal activities of (pyridinylphenoxymethylene)phenyl methoxyiminoacetates. J. Agric. Food Chem. 2017, 65, 6114–6121. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.Y.; Wang, W.W.; Du, X.H. Synthesis, crystal structure and herbicidal activity of methyl (E)-α-(methoxyimino)-2-((4-(3-chloro-5-(trifluoromethyl)-pyridine-2-yl)phenoxy)methyl)benzeneacetate. Chin. J. Struct. Chem. 2019, 38, 1123–1128. [Google Scholar] [CrossRef]
- Cao, Y.-Y.; Cai, Z.-F.; Zhang, W.-L.; Du, X.-H. Synthesis and herbicidal activity of novel β-methoxyacrylate derivatives containing a substituted phenylpyridine moiety. Chem. Res. Chin. Univ. 2019, 35, 1008–1011. [Google Scholar] [CrossRef]
- Harvey, J.N.; Jover, J.; Lloyd-Jones, G.C.; Moseley, J.D.; Murray, P.; Renny, J.S. The Newman-Kwart rearrangement of O-aryl thiocarbamates: Substantial reduction in reaction temperatures through palladium catalysis. Angew. Chem. Int. Ed. 2009, 48, 7612–7615. [Google Scholar] [CrossRef]
- Shen, Y.-H.; Zhu, Y.-C.; Xiong, G.-Y. Method for Synthesizing Pyroxasulfone and Its Application for Pesticide. WO Patent WO2022000603A1, 6 January 2022. [Google Scholar]
- Pujol Dilme, M.D.; Harrak Serifi, Y.; Pouplana Sole, R.; Rosell Pellise, G.; Basset Olive, J. Preparation of Phenyl Methyl Sulfones as Antiinflammatory and Antitumor Agents. WO Patent WO 2012004443, 12 January 2012. [Google Scholar]
- Zhou, Y.; Xue, N.; Wang, G.; Qu, J. Synthesis, structure and herbicidal activity of substituted phenyl pyrazole derivatives. J. Chem. Res. 2010, 12, 684–688. [Google Scholar] [CrossRef]
- Cai, Z.-F.; Zhang, W.-L.; Cao, Y.-Y.; Du, X.-H. Synthesis and herbicidal activities of 2-phenylpyridine compounds containing alkenyl moieties. J. Heterocycl. Chem. 2022, 59, 1247–1252. [Google Scholar] [CrossRef]
Compound | Chemical Structure | Weed a | ||||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | EC | DS | SV | AT | AR | EP | |
6a | Cl | CF3 | 0 b | 50 | 0 | 50 | 0 | 50 |
6b | Br | Cl | 0 | 0 | 0 | 30 | 0 | 30 |
6c | Cl | F | 0 | 60 | 0 | 60 | 0 | 50 |
6d | F | Cl | 0 | 30 | 0 | 30 | 0 | 0 |
6e | Cl | CH3 | 0 | 0 | 0 | 20 | 0 | 0 |
7a | Cl | CF3 | 0 | 0 | 0 | 0 | 0 | 0 |
7b | Br | Cl | 0 | 0 | 0 | 0 | 0 | 0 |
7c | Cl | F | 0 | 0 | 0 | 20 | 0 | 0 |
7d | F | Cl | 0 | 0 | 0 | 20 | 0 | 0 |
7e | Cl | CH3 | 0 | 0 | 0 | 0 | 0 | 0 |
pyroxasulfone | / | 60 | 75 | 60 | 50 | 50 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zhang, W.; Yan, Z.; Du, X. Synthesis of Novel Pyrazole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules 2022, 27, 6274. https://doi.org/10.3390/molecules27196274
Cai Z, Zhang W, Yan Z, Du X. Synthesis of Novel Pyrazole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules. 2022; 27(19):6274. https://doi.org/10.3390/molecules27196274
Chicago/Turabian StyleCai, Zengfei, Wenliang Zhang, Zhongjie Yan, and Xiaohua Du. 2022. "Synthesis of Novel Pyrazole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity" Molecules 27, no. 19: 6274. https://doi.org/10.3390/molecules27196274
APA StyleCai, Z., Zhang, W., Yan, Z., & Du, X. (2022). Synthesis of Novel Pyrazole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules, 27(19), 6274. https://doi.org/10.3390/molecules27196274