Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemistry
3.1.1. Materials and General Procedures
3.1.2. Synthesis of Benzazecines 3 and 4
3.1.3. Transformation of Allene 3a into 6-Methoxymethylidenebenzazecin 4a
3.2. Inhibition of Cholinesterases and Inhibition of Monoamine Oxidases
3.2.1. Inhibition of Cholinesterases
3.2.2. Inhibition of Monoamine Oxidases
3.3. Solubility and Hydrolytic Stability of 3e and 3n
3.3.1. Aqueous Solubility Measurement and U-HPLC Analytical Condition
3.3.2. Hydrolytic Stability in Water-Buffered Solution and U-HPLC Analytical Condition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Sperry, J. Isolation and biological activity of azocine and azocane alkaloids. Bioorg. Med. Chem. 2021, 54, 116560–116563. [Google Scholar] [CrossRef]
- Theuns, H.G.; Lenting, H.B.M.; Salemink, C.A.; Tanaka, H.; Shibata, M.; Ito, K.; Lousberg, R.J.C. Neodihydrothebaine and bractazonine, two dibenz[d,f]azonine alkaloids of Papaver bracteatum. Phytochemistry 1984, 23, 1157–1166. [Google Scholar] [CrossRef]
- Ni, L.; Schinnerl, J.; Bao, M.-f.; Zhang, B.-J.; Wu, J.; Cai, X.-H. Two key biogenetic intermediates of Cephalotaxus alkaloids from Cephalotaxus oliveri and C. Lanceolat. Tetrahedron Lett. 2016, 57, 5201–5204. [Google Scholar] [CrossRef]
- Wu, X.-D.; Li, X.-N.; Peng, L.-Y.; Zhao, Q.-S. Huperserratines A and B, two macrocyclic Lycopodium alkaloids with an unusual skeleton from Huperzia serrat. J. Org. Chem. 2020, 85, 6803–6807. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, M.A.O.; Abadi, A.H.; Lehmann, J.; Schweikert, P.M.; Enzensperger, C. D1-like receptors distinguishing thieno-azecine regioisomers. Med. Chem. Commun. 2015, 6, 1679–1686. [Google Scholar] [CrossRef]
- Voskressensky, L.G.; Borisova, T.N.; Titov, A.A.; Listratova, A.V.; Kulikova, L.N.; Varlamov, A.V.; Khrustalev, V.N.; Aleksandrov, G.G. Synthesis of azecino[5,4-b]indoles and indolo[3,2-e][2]benzazonines via tandem transformation of hydrogenated indoloquinolizines and indolizines. Russ. Chem. Bull. Int. Ed. 2012, 61, 1231–1241. [Google Scholar] [CrossRef]
- Sharma, A.; Appukkuttana, P.; Van der Eycken, E. Microwave-assisted synthesis of medium-sized heterocycles. Chem. Commun. 2012, 48, 1623–1637. [Google Scholar] [CrossRef]
- Listratova, A.V.; Voskressensky, L.G. Recent advances in the synthesis of hydrogenated azocine-containing molecules. Synthesis 2017, 49, 3801–3834. [Google Scholar] [CrossRef]
- Weston, M.H.; Nakajima, K.; Parvez, M.; Back, T.G. Ring-expansion of tertiary cyclic α-vinylamines by tandem conjugate addition to (p-toluenesulfonyl)ethyne and formal 3-aza-Cope rearrangement. Chem. Commun. 2006, 37, 3903–3905. [Google Scholar] [CrossRef] [PubMed]
- Costil, R.; Lefebvre, Q.; Clayden, J. Medium-Sized-Ring Analogues of Dibenzodiazepines by a Conformationally Induced Smiles Ring Expansion. Angew. Chem. Int. Ed. 2017, 46, 14794–14798. [Google Scholar] [CrossRef] [Green Version]
- Titov, A.A.; Niso, M.; de Candia, M.; Kobzev, M.S.; Varlamov, A.V.; Borisova, T.N.; Voskressensky, L.G.; Colabufo, N.A.; Cellamare, S.; Pisani, L.; et al. 3-benzazecine-based cyclic allene derivatives as highly potent P-glycoprotein inhibitors overcoming doxorubicin multidrug resistance. Future Med. Chem. 2019, 11, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Kobzev, M.S.; Titov, A.A.; Alexandrova, E.V.; Purgatorio, R.; Catto, M.; Sorokina, E.A.; Borisova, T.N.; Varlamov, A.V.; Altomare, C.D.; Voskressensky, L.G. Synthesis of 8-phenyl substituted 3-benzazecines with allene moiety, their thermal rearrangement and evaluation as acetylcholinesterase inhibitors. Mol. Divers. 2022, 26, 1243–1247. [Google Scholar] [CrossRef] [PubMed]
- Gobéand, V.; Guinchard, X. Pd (0)-catalyzed tandem deprotection/cyclization of tetrahydro-β-carbolines on allenes: Application to the synthesis of indolo[2,3-a]quinolizidines. Org. Lett. 2014, 16, 1924–1927. [Google Scholar] [CrossRef]
- Vidal, X.; Mascareñas, J.L.; Gulías, M. Assembly of Tetrahydroquinolines and 2-Benzazepines by Pd-Catalyzed Cycloadditions Involving the Activation of C (sp3)–H Bonds. Org. Lett. 2021, 23, 5323–5328. [Google Scholar] [CrossRef] [PubMed]
- Voskressensky, L.G.; Titov, A.A.; Dzhankaziev, M.S.; Borisova, T.N.; Kobzev, M.S.; Dorovatovskii, P.V.; Khrustalev, V.N.; Aksenov, A.V.; Varlamov, A.V. First synthesis of heterocyclic allenes–benzazecine derivatives. New J. Chem. 2017, 41, 1902–1904. [Google Scholar] [CrossRef]
- Titov, A.A.; Kobzev, M.S.; Borisova, T.N.; Sorokina, E.A.; Van der Eycken, E.; Varlamov, A.V.; Voskressensky, L.G. Unusual transformations of cyclic allenes with an enamine moiety into complex frameworks. Synlett 2020, 31, 672–676. [Google Scholar] [CrossRef]
- Titov, A.A.; Kobzev, M.S.; Borisova, T.N.; Listratova, A.V.; Evenko, T.V.; Varlamov, A.V.; Voskressensky, L.G. Facile Methods for the Synthesis of 8-Ylidene-1,2,3,8-tetrahydrobenzazecines. Eur. J. Org. Chem. 2020, 2020, 3041–3049. [Google Scholar] [CrossRef]
- Cho, S.-D.; Kweon, D.-H.; Kang, Y.-J.; Lee, S.-G.; Lee, W.S.; Yoon, Y.-J. Synthesis of 6, 7-dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinolines. J. Heterocycl. Chem. 1999, 36, 1151–1156. [Google Scholar] [CrossRef]
- Taylor, A.M.; Schreiber, S.L. Enantioselective addition of terminal alkynes to isolated isoquinoline iminiums. Org. Lett. 2006, 8, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghray, D.; Zhang, Q.J.J. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment: A miniperspective. Med. Chem. 2018, 61, 5108–5121. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [PubMed]
- Purgatorio, R.; Gambacorta, N.; Catto, M.; de Candia, M.; Pisani, L.; Espargaró, A.; Sabaté, R.; Cellamare, S.; Nicolotti, O.; Altomare, C. Pharmacophore Modeling and 3D-QSAR Study of Indole and Isatin Derivatives as Antiamyloidogenic Agents Targeting Alzheimer’s Disease. Molecules 2020, 25, 5773. [Google Scholar] [CrossRef] [PubMed]
- Bolognino, I.; Giangregorio, N.; Pisani, L.; de Candia, M.; Purgatorio, R.; Tonazzi, A.; Altomare, C.D.; Cellamare, S.; Catto, M. A prospective repurposing of dantrolene as a multitarget agent for Alzheimer’s disease. Molecules 2019, 24, 4298. [Google Scholar] [CrossRef]
- Purgatorio, R.; Kulikova, L.N.; Pisani, L.; Catto, M.; de Candia, M.; Carrieri, A.; Cellamare, S.; De Palma, A.; Beloglazkin, A.A.; Raesi, G.R.; et al. Scouting around 1,2,3,4-tetrahydrochromeno[3,2-c]pyridin-10-ones for single- and multitarget ligands directed towards relevant Alzheimer’s targets. ChemMedChem 2020, 15, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Purgatorio, R.; de Candia, M.; Catto, M.; Rullo, M.; Pisani, L.; Denora, N.; Carrieri, A.; Nevskaya, A.A.; Voskressensky, L.G.; Altomare, C.D. Evaluation of water-soluble Mannich base prodrugs of 2,3,4,5-tetrahydroazepino[4,3-b]indol-1(6H)-one as multitarget-directed agents for Alzheimer’s disease. ChemMedChem 2021, 16, 589–598. [Google Scholar] [CrossRef]
Entry | Isoquinoline | R1 | R2 | % Yield |
---|---|---|---|---|
1 | 2a | OMe | Me | 50 |
2 | 2b | OMe | Bn | 80 |
3 | 2c | OMe | Ph | 72 |
4 | 2d | OMe | C6H4-Me-p | 77 |
5 | 2e | OMe | C6H4-OMe-p | 90 |
6 | 2f | OMe | C6H4-F-p | 83 |
7 | 2g | H | i-Pr | 40 |
8 | 2h | H | Ph | 48 |
Entry | Cmpd | R1 | R2 | X | Solvents | Conditions | Allene 3 (yield, %) a | Benzazecine 4 (yield, %) a |
---|---|---|---|---|---|---|---|---|
1 | 2a | OMe | Me | CO2Me | CF3CH2OH | 25 °C, 1 day | 3a, 80% | 4a, - |
2 | 2b | OMe | Bn | CO2Me | CF3CH2OH | 25 °C, 1 day | 3b, 91% | 4b, - |
3 | 2b | OMe | Bn | CO2Me | (CF3)2CHOH | 20 °C, 3 days | 3b, 40% b | - |
4 | 2b | OMe | Bn | CO2Me | i-PrOH | 20 °C, 4 days | 3b, 70% | - |
5 | 2c | OMe | Ph | CO2Me | CF3CH2OH | 25 °C, 1 day | 3c, 30% | 4c, 32% |
6 | 2c | OMe | Ph | CO2Me | i-PrOH | 20 °C, 10 days | 3c, 25% b | - |
7 | 2d | OMe | 4-MePh | CO2Me | CF3CH2OH | 25 °C, 1 day | 3d, 47% | 4d, 35% |
8 | 2d | OMe | 4-MePh | Ac | CF3CH2OH | 7 °C, 4 days | 3i, 50% | - |
9 | 2e | OMe | 4-MeOPh | CO2Me | CF3CH2OH | 25 °C, 1 day | 3e, 63% | 4e, 28% |
10 | 2e | OMe | 4-MeOPh | Ac | CF3CH2OH | 7 °C, 2 days | 3j, 73% | - |
11 | 2f | OMe | 4-FPh | CO2Me | CF3CH2OH | 25 °C, 1 day | 3f, 24% | 4f, 47% |
12 | 2f | OMe | 4-FPh | Ac | CF3CH2OH | 7 °C, 6 h | 3k, 76% | - |
13 | 2g | H | i-Pr | CO2Me | CF3CH2OH | 25 °C, 1 day | 3g, 87% | 4g, - |
14 | 2g | H | i-Pr | Ac | CF3CH2OH | 7 °C, 2 days | 3l, 44% | - |
15 | 2h | H | Ph | CO2Me | CF3CH2OH | 25 °C, 1 day | 3h, 64% | 4h, - |
16 | 2h | H | Ph | Ac | CF3CH2OH | 7 °C, 3 days | 3m, 50% | - |
Entry | Cmpd | R2 | R3 | X | Enzymes’ Inhibition Data a | |||
---|---|---|---|---|---|---|---|---|
hAChE | hBChE | hMAO-A | hMAO-B | |||||
1 | 3d | 4-MePh | CH2OMe | CO2Me | 19.3 ± 3.3 | n.i. | (30 ± 4) | (30 ± 5) |
2 | 3e | 4-OMePh | CH2OMe | CO2Me | 12.2 ± 2.6 | n.i. | (37 ± 5) | (23 ± 1) |
3 | 3i | 4-MePh | CH2OMe | Ac | 32.5 ± 4.4 | n.i. | (28 ± 1) | (38 ± 4) |
4 | 3j | 4-OMePh | CH2OMe | Ac | 13.2 ± 0.7 | n.i. | (29 ± 5) | (28 ± 5) |
5 | 3n b | 4-OMePh | Ph | CO2Me | 5.05 ± 0.21 | n.i. | (20 ± 5) | (24 ± 5) |
6 | 3o b | 4-OMePh | Ph | Ac | (23 ± 4) | n.i. | (34 ± 2) | (16 ± 2) |
Cmpd | 3e | 3n | |
---|---|---|---|
AChE inhibition, Ki μM | 4.89 ± 0.47 | 4.45 ± 0.08 | |
Solubility a, μM | 17.4 ± 0.7 | 0.200 ± 0.015 | |
Hydrolytic half-life a, h | 4.5 | >12 | |
ADME-related properties | GI absorption b | High | High |
BBB permeant c | Yes | Yes | |
P-gp substrate | No | No | |
CYP2C19 inhib. | No | No | |
CYP3A4 inhib. | Yes | Yes | |
PAINS | No alert | No alert |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titov, A.A.; Purgatorio, R.; Obydennik, A.Y.; Listratova, A.V.; Borisova, T.N.; de Candia, M.; Catto, M.; Altomare, C.D.; Varlamov, A.V.; Voskressensky, L.G. Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity. Molecules 2022, 27, 6276. https://doi.org/10.3390/molecules27196276
Titov AA, Purgatorio R, Obydennik AY, Listratova AV, Borisova TN, de Candia M, Catto M, Altomare CD, Varlamov AV, Voskressensky LG. Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity. Molecules. 2022; 27(19):6276. https://doi.org/10.3390/molecules27196276
Chicago/Turabian StyleTitov, Alexander A., Rosa Purgatorio, Arina Y. Obydennik, Anna V. Listratova, Tatiana N. Borisova, Modesto de Candia, Marco Catto, Cosimo D. Altomare, Alexey V. Varlamov, and Leonid G. Voskressensky. 2022. "Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity" Molecules 27, no. 19: 6276. https://doi.org/10.3390/molecules27196276
APA StyleTitov, A. A., Purgatorio, R., Obydennik, A. Y., Listratova, A. V., Borisova, T. N., de Candia, M., Catto, M., Altomare, C. D., Varlamov, A. V., & Voskressensky, L. G. (2022). Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity. Molecules, 27(19), 6276. https://doi.org/10.3390/molecules27196276