MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reduction of 3-methylcyclohexanone (3MeCH = O)
2.2. Reduction of 2-methylcyclohexanone (2MeCH = O)
2.3. Reduction of 2-phenylcyclohexanone (2PhCH = O)
2.4. Stability and Reusability of MOF-808
3. Materials and Methods
3.1. Synthesis of Catalysts
3.2. General Procedure for the MPV Reduction of Substituted Cyclohexanones
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ponndorf, W. Der Reversible Austausch Der Oxydationsstufen Zwischen Aldehyden Oder Ketonen Einerseits Und Primären Oder Sekundären Alkoholen Anderseits. Angew. Chem. 1926, 39, 138. [Google Scholar] [CrossRef]
- Verley, A. Exchange of Functional Groups between Two Molecules. Exchange of Alcohol and Aldehyde Groups. Bull. Soc. Chim. Fr. 1925, 37, 537. [Google Scholar]
- Meerwein, H.; Schmidt, R. Ein Neues Verfahren Zur Reduktion von Aldehyden Und Ketonen. Justus Liebigs Ann. Chem. 1925, 444, 221–238. [Google Scholar] [CrossRef]
- Posner, G.H.; Runquist, A.W.; Chapdelaine, M.J. Organic Reactions at Alumina Surfaces. 6. Isopropyl Alcohol and Diisopropylcarbinol on Dehydrated Alumina as Reagents for Very Selective Carbonyl Reductions. J. Org. Chem. 1977, 42, 1202–1208. [Google Scholar] [CrossRef]
- Gargano, M.; D’orazio, V.; Ravasio, N.; Rossi, M. Selective Preparation of Unsaturated Alcohols via Catalytic Meerwein-Ponndorf Reduction of Unsaturated Carbonyl Compounds over Metal Oxides. J. Mol. Catal. 1990, 58, L5–L8. [Google Scholar] [CrossRef]
- Kaspar, J.; Trovarelli, A.; Lenarda, M.; Graziani, M. A Meerwein-Ponndorf-Verley Type Reduction of α,β Unsaturated Ketones to Allylic Alcohols Catalyzed by MgO. Tetrahedron Lett. 1989, 30, 2705–2706. [Google Scholar] [CrossRef]
- Kuno, H.; Takahashi, K.; Shibagaki, M.; Shimazaki, K.; Matsushita, H. Oxidation of Secondary Alcohols over Hydrous Zirconium(IV) Oxide. BCSJ 2006, 63, 1943–1946. [Google Scholar] [CrossRef]
- Shabtai, J.; Lazar, R.; Biron, E. Catalysis of Organic Reactions by Molecular Sieve Systems: 1. Meerwein-Ponndorf-Verley Reductions. J. Mol. Catal. 1984, 27, 35–43. [Google Scholar] [CrossRef]
- Van Der Waal, J.C.; Tan, K.; Van Bekkum, H. Zeolite Titanium Beta: A Selective and Water Resistant Catalyst in Meerwein-Ponndorf-Verley-Oppenauer Reactions. Catal. Lett. 1996 411 1996, 41, 63–67. [Google Scholar] [CrossRef]
- Corma, A.; Domine, M.E.; Nemeth, L.; Valencia, S. Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein-Ponndorf-Verley Reaction). J. Am. Chem. Soc. 2002, 124, 3194–3195. [Google Scholar] [CrossRef]
- Zhu, Y.; Chuah, G.; Jaenicke, S. Chemo- and Regioselective Meerwein–Ponndorf–Verley and Oppenauer Reactions Catalyzed by Al-Free Zr-Zeolite Beta. J. Catal. 2004, 227, 1–10. [Google Scholar] [CrossRef]
- Corma, A.; Llabrés i Xamena, F.X.; Prestipino, C.; Renz, M.; Valencia, S. Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite. J. Phys. Chem. C 2009, 113, 11306–11315. [Google Scholar] [CrossRef]
- Vermoortele, F.; Vandichel, M.; Van de Voorde, B.; Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; de Vos, D.E. Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angew. Chem. - Int. Ed. 2012, 51, 4887–4890. [Google Scholar] [CrossRef]
- Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; et al. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468. [Google Scholar] [CrossRef] [PubMed]
- Plessers, E.; Fu, G.; Tan, C.Y.X.; de Vos, D.E.; Roeffaers, M.B.J. Zr-Based MOF-808 as Meerwein–Ponndorf–Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts 2016, 6, 104. [Google Scholar] [CrossRef]
- Mautschke, H.H.; Llabrés i Xamena, F.X. One-Step Chemo-, Regio- and Stereoselective Reduction of Ketosteroids to Hydroxysteroids over Zr-Containing MOF-808 Metal-Organic Frameworks. Chem. – A Eur. J. 2021, 27, 10766–10775. [Google Scholar] [CrossRef]
- Mautschke, H.-H.; Drache, F.; Senkovska, I.; Kaskel, S.; Llabrés i Xamena, F.X. Catalytic Properties of Pristine and Defect-Engineered Zr-MOF-808 Metal Organic Frameworks. Catal. Sci. Technol. 2018, 8, 3610–3616. [Google Scholar] [CrossRef]
- Cirujano, F.G.; Llabrés i Xamena, F.X. Tuning the Catalytic Properties of UiO-66 Metal-Organic Frameworks: From Lewis to Defect-Induced Brønsted Acidity. J. Phys. Chem. Lett. 2020, 11, 4879–4890. [Google Scholar] [CrossRef]
- Guarinos, J.M.; Cirujano, F.G.; Rapeyko, A.; Llabrés i Xamena, F.X. Conversion of Levulinic Acid to γ-Valerolactone over Zr-Containing Metal-Organic Frameworks: Evidencing the Role of Lewis and Brønsted Acid Sites. Mol. Catal. 2021, 515, 111925. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; García, H. Metal-Organic Frameworks as Multifunctional Solid Catalysts. Trends Chem. 2020, 2, 454–466. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020, 12, 4732–4753. [Google Scholar] [CrossRef]
- De Graauw, C.F.; Peters, J.A.; Van Bekkum, H.; Huskens, J. Meerwein-Ponndorf-Verley Reductions and Oppenauer Oxidations: An Integrated Approach. Synth. (Stuttg). 1994, 1994, 1007–1017. [Google Scholar] [CrossRef]
- Yin, J.; Huffman, M.A.; Conrad, K.M.; Armstrong, J.D. Highly Diastereoselective Catalytic Meerwein-Ponndorf-Verley Reductions. J. Org. Chem. 2006, 71, 840–843. [Google Scholar] [CrossRef]
- Creyghton, E.J.; Ganeshie, S.D.; Downing, R.S.; Van Bekkum, H. Stereoselective Reduction of 4-Tert-Butylcyclohexanone to Cis-4-Tert-Butylcyclohexanol Catalysed by Zeolite BEA. J. Chem. Soc. Chem. Commun. 1995, 18, 1859–1860. [Google Scholar] [CrossRef]
- Van Der Waal, J.C.; Creyghton, E.J.; Kunkeler, P.J.; Tan, K.; Van Bekkum, H. Beta–Type Zeolites as Selective and Regenerable Catalysts in the Meerwein–Ponndorf–Verley Reduction of Carbonyl Compounds. Top. Catal. 1997, 4, 261–268. [Google Scholar] [CrossRef]
- Anwander, R.; Palm, C.; Gerstberger, G.; Groeger, O.; Engelhardt, G. Enhanced Catalytic Activity of MCM-41-Grafted Aluminium Isopropoxide in MPV Reductions. Chem. Commun. 1998, 17, 1811–1812. [Google Scholar] [CrossRef]
- De Bruyn, M.; De Vos, D.E.; Jacobs, P.A. Chemoselective Hydrogen Transfer Reduction of Unsaturated Ketones to Allylic Alcohols with Solid Zr and Hf Catalysts. Adv. Synth. Catal. 2002, 344, 1120–1125. [Google Scholar] [CrossRef]
- Karatas, B.U.; Oksal, B.S.; Karatas, E. New In(OiPr)3-MCM-41 Heterogeneous Catalyst in MPV Reductions of Unsaturated Carbonyl Compounds: Effect of Mesoporous SBA-15 and MCM-41 as Supporting Surfaces on Catalytic Activity of In(OiPr)3. J. Incl. Phenom. Macrocycl. Chem. 2017, 87, 85–94. [Google Scholar] [CrossRef]
- Morey, M.S.; Stucky, G.D.; Schwarz, S.; Fröba, M. Isomorphic Substitution and Postsynthesis Incorporation of Zirconium into MCM-48 Mesoporous Silica. J. Phys. Chem. B 1999, 103, 2037–2041. [Google Scholar] [CrossRef]
- Zhu, Y.; Jaenicke, S.; Chuah, G.K. Supported Zirconium Propoxide—a Versatile Heterogeneous Catalyst for the Meerwein–Ponndorf–Verley Reduction. J. Catal. 2003, 218, 396–404. [Google Scholar] [CrossRef]
- Konishi, K.; Makita, K.; Aida, T.; Inoue, S. Highly Stereoselective Hydrogen Transfer from Alcohols to Carbonyl Compounds Catalysed by Aluminium Porphyrins. J. Chem. Soc. Chem. Commun. 1988, 10, 643–645. [Google Scholar] [CrossRef]
- Furukawa, H.; Gandara, F.; Zhang, Y.B.; Jiang, J.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water Adsorption in Porous Metal−Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369–4381. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M.H.; Jakobsen, S.; Lillerud, K.P.; Lamberti, C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23, 1700–1718. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Li, Z.; Wang, X.; Xu, Y.; Chen, S.; Wang, Z. Optimized synthesis of Zr (IV) metal organic frameworks (MOFs-808) for efficient hydrogen storage. New J. Chem. 2019, 43, 4092–4099. [Google Scholar] [CrossRef]
Entry | Conditions | Conversion (%) | Diastereoselectivity (%) 1 |
---|---|---|---|
1 | MOF-808 (iPrOH, 80 °C) | 99 (6 h) | 82 (cis) |
2 | MOF-808 (2-BuOH, 80 °C) | 99 (6 h) | 68 (cis) |
3 | UiO-66 (iPrOH, 80 °C) | 3 (24 h) | 74 (cis) |
4 | UiO-66 (2-BuOH, 80 °C) | 3 (24 h) | 69 (cis) |
5 | UiO-66 (2-BuOH, 120 °C) | 98 (24 h) | 64 (cis) |
6 | Zr-β (iPrOH, reflux) 2 | 54.4 (0.5 h) | 71 (trans) |
7 | Ti-β (iPrOH, reflux) 3 | 25.8 (6 h) | 70 (trans) |
8 | Zr/SBA (iPrOH, reflux) 2 | 94.1 (6 h) | 75 (cis) |
Entry | Conditions | Conversion (%) | Diastereoselectivity (%) 1 |
---|---|---|---|
1 | MOF-808 (iPrOH, 80 °C) | 96 (6 h) | 53 (trans) |
2 | MOF-808 (2-BuOH, 80 °C) | 100 (24 h) | 61 (cis) |
3 | UiO-66 (2-BuOH, 120 °C) | 13 (24 h) | 58 (cis) |
4 | Zr-β (iPrOH, reflux) 2 | 6.1 (0.5 h) | 55 (cis) |
5 | Ti-β (iPrOH, reflux) 3 | 8.8 (6 h) | 60 (cis) |
6 | Zr/SBA (iPrOH, reflux) 2 | 3.6 (6 h) | 58 (trans) |
Entry | Conditions | Conversion (%) | Diastereoselectivity (%) 1 |
---|---|---|---|
1 | MOF-808 (iPrOH, 80 °C) | 36 (6 h) | 90 (cis) |
96 (24 h) | |||
2 | MOF-808 (2-BuOH, 80 °C) | 28 (6 h) | 94 (cis) |
97 (24 h) | |||
3 | MOF-808 (2-BuOH, 120 °C) | 26 (0.5 h) | 90 (cis) |
100 (6 h) | |||
4 | Al(OiPr)3 (2-BuOH, 120 °C) | 43 (24 h) | 74 (cis) |
5 | UiO-66 (2-BuOH, 120 °C) | 4 (24 h) | 76 (cis) |
6 | Zr-β (2-BuOH, 120 °C) | 12 (24 h) | 72 (cis) |
7 | ZrO2 nanopowder (2-BuOH, 120 °C) | n. r. (24 h) | - |
8 | Zr(OiPr)4·iPrOH (2-BuOH, 120 °C) | n. r. (24 h) | - |
9 | NaBH4 (EtOH, r. t.) 2 | 100 (2 h) | 62 (trans) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mautschke, H.H.; Llabrés i Xamena, F.X. MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones. Molecules 2022, 27, 6315. https://doi.org/10.3390/molecules27196315
Mautschke HH, Llabrés i Xamena FX. MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones. Molecules. 2022; 27(19):6315. https://doi.org/10.3390/molecules27196315
Chicago/Turabian StyleMautschke, Hans Hilmar, and Francesc X. Llabrés i Xamena. 2022. "MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones" Molecules 27, no. 19: 6315. https://doi.org/10.3390/molecules27196315
APA StyleMautschke, H. H., & Llabrés i Xamena, F. X. (2022). MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones. Molecules, 27(19), 6315. https://doi.org/10.3390/molecules27196315