Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthetic Procedures
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Orlikova, B.; Chaouni, W.; Schumacher, M.; Aadil, M.; Diederich, M.; Kirsch, G. Synthesis and bioactivity of novel amino-pyrazolopyridines. Eur. J. Med. Chem. 2014, 85, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kitamura, N.; Musharrafieh, R.; Wang, J. Discovery of Potent and Broad-Spectrum Pyrazolopyridine-Containing Antivirals against Enteroviruses D68, A71, and Coxsackievirus B3 by Targeting the Viral 2C Protein. J. Med. Chem. 2021, 64, 8755–8774. [Google Scholar] [CrossRef] [PubMed]
- Nagender, P.; Naresh Kumar, R.; Malla Reddy, G.; Krishna Swaroop, D.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents. Bioorganic Med. Chem. Lett. 2016, 26, 4427–4432. [Google Scholar] [CrossRef] [PubMed]
- Czodrowski, P.; Mallinger, A.; Wienke, D.; Esdar, C.; Pöschke, O.; Busch, M.; Rohdich, F.; Eccles, S.A.; Ortiz-Ruiz, M.J.; Schneider, R.; et al. Structure-Based Optimization of Potent, Selective, and Orally Bioavailable CDK8 Inhibitors Discovered by High-Throughput Screening. J. Med. Chem. 2016, 59, 9337–9349. [Google Scholar] [CrossRef]
- Eagon, S.; Hammill, J.T.; Sigal, M.; Ahn, K.J.; Tryhorn, J.E.; Koch, G.; Belanger, B.; Chaplan, C.A.; Loop, L.; Kashtanova, A.S.; et al. Synthesis and Structure–Activity Relationship of Dual-Stage Antimalarial Pyrazolo[3,4-b]pyridines. J. Med. Chem. 2020, 63, 11902–11919. [Google Scholar] [CrossRef]
- Haydl, A.M.; Breit, B.; Liang, T.; Krische, M.J. Alkynes as Electrophilic or Nucleophilic Allylmetal Precursors in Transition-Metal Catalysis. Angew. Chem. Int. Ed. 2017, 56, 11312–11325. [Google Scholar] [CrossRef]
- Ru, G.; Zhang, T.; Zhang, M.; Jiang, X.; Wan, Z.; Zhu, X.; Shen, W.; Gao, G. Recent progress towards the transition-metal-catalyzed Nazarov cyclization of alkynes via metal carbenes. Org. Biomol. Chem. 2021, 19, 5274–5283. [Google Scholar] [CrossRef]
- Yao, T.; Xia, T.; Yan, W.; Xu, H.; Zhang, F.; Xiao, Y.; Zhang, J.; Liu, L. Copper-Catalyzed Chemodivergent Cyclization of N-(ortho-alkynyl)aryl-Pyrrole and Indoles. Org. Lett. 2020, 22, 4511–4516. [Google Scholar] [CrossRef]
- Yao, T.; Zhang, F.; Zhang, J.; Liu, L. Palladium-Catalyzed Intermolecular Heck-Type Dearomative [4 + 2] Annulation of 2H-Isoindole Derivatives with Internal Alkynes. Org. Lett. 2020, 22, 5063–5067. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, S. A Strategy to Obtain o-Naphthoquinone Methides: Ag(I)-Catalyzed Cyclization of Enynones for the Synthesis of Benzo[h]chromanes and Naphthopyryliums. Org. Lett. 2019, 21, 1488–1492. [Google Scholar] [CrossRef]
- Wu, F.; Cheng, T.; Zhu, S. Construction of Partially Protected Nonsymmetrical Biaryldiols via Semipinacol Rearrangement of o-NQM Derived from Enynones. Org. Lett. 2021, 23, 71–75. [Google Scholar] [CrossRef]
- Rong, M.; Qin, T.; Zi, W. Rhenium-Catalyzed Intramolecular Carboalkoxylation and Carboamination of Alkynes for the Synthesis of C3-Substituted Benzofurans and Indoles. Org. Lett. 2019, 21, 5421–5425. [Google Scholar] [CrossRef]
- Rondla, N.R.; Levi, S.M.; Ryss, J.M.; Vanden Berg, R.A.; Douglas, C.J. Palladium-Catalyzed C-CN Activation for Intramolecular Cyanoesterification of Alkynes. Org. Lett. 2011, 13, 1940–1943. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Wang, H.; Guo, D.; Ye, D.; Xu, Y.; Jiang, H.; Liu, H. Silver-catalyzed intramolecular hydroamination of alkynes in aqueous media: Efficient and regioselective synthesis for fused benzimidazoles. Green. Chem. 2011, 13, 397–405. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Y.; Gao, J.; Zhang, H.; Yang, K.; Li, J.; Yan, X.; Li, Y.; Zhu, Y. I2-Mediated [3 + 2] annulation of methyl-azaarenes with alkyl 2-isocyanoacetates or amino acid ester hydrochlorides: Selective synthesis of iodine-functionalized and non-iodine-functionalized fused imidazoles. Org. Chem. Front. 2022, 9, 1403–1409. [Google Scholar] [CrossRef]
- Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of Heterocycles via Electrophilic Cyclization of Alkynes Containing Heteroatom. Chem. Rev. 2011, 111, 2937–2980. [Google Scholar] [CrossRef]
- Fang, G.; Bi, X. Silver-catalysed reactions of alkynes: Recent advances. Chem. Soc. Rev. 2015, 44, 8124–8173. [Google Scholar] [CrossRef]
- Dorel, R.; Echavarren, A.M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. [Google Scholar] [CrossRef]
- Costello, J.P.; Ferreira, E.M. Regioselectivity Influences in Platinum-Catalyzed Intramolecular Alkyne O-H and N-H Additions. Org. Lett. 2019, 21, 9934–9939. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.; Zhu, S. Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem 2018, 4, 1208–1262. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tang, Z.; Zhang, J.; Liu, L. Gold-catalyzed intermolecular [4+1] spiroannulation via site-selective aromatic C(sp2)–H functionalization and dearomatization of phenol derivatives. Chem. Commun. 2020, 56, 8202–8205. [Google Scholar] [CrossRef]
- Ma, J.; Chen, K.; Fu, H.; Zhang, L.; Wu, W.; Jiang, H.; Zhu, S. Dual Catalysis: Proton/Metal-Catalyzed Tandem Benzofuran Annulation/Carbene Transfer Reaction. Org. Lett. 2016, 18, 1322–1325. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, G.; Shen, C.; He, W.; Ye, L. Synthesis of fused isoquinolines via gold-catalyzed tandem alkyne amination/intramolecular O-H insertion. Org. Chem. Front. 2016, 3, 491–495. [Google Scholar] [CrossRef]
- Zhou, M.; Song, R.; Wang, C.; Li, J. Synthesis of Azepine Derivatives by Silver-Catalyzed [5+2] Cycloaddition of γ-Amino Ketones with Alkynes. Angew. Chem. Int. Ed. 2013, 52, 10805–10808. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, L.; Zhu, S. 1,4-Addition of o-naphthoquinone methides induced by silver-catalyzed cyclization of enynones: An approach to unsymmetrical triarylmethanes and benzo[f]chromenes. Org. Chem. Front. 2020, 7, 3387–3392. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Xu, D.; Li, M.; Wei, W.; Liang, Y. Silver Trifluoromethanesulfonate-Catalyzed Annulation of Propargylic Alcohols with 3-Methyleneisoindolin-1-one. J. Org. Chem. 2020, 85, 2626–2634. [Google Scholar] [CrossRef]
- Niu, Y.; Yan, Z.; Gao, G.; Wang, H.; Shu, X.; Ji, K.; Liang, Y. Synthesis of Isoquinoline Derivatives via Ag- Catalyzed Cyclization of 2-Alkynyl Benzyl Azides. J. Org. Chem. 2009, 74, 2893–2896. [Google Scholar] [CrossRef]
- Huo, Z.; Gridnev, I.D.; Yamamoto, Y. A Method for the Synthesis of Substituted Quinolines via Electrophilic Cyclization of 1-Azido-2-(2-propynyl)benzene. J. Org. Chem. 2010, 75, 1266–1270. [Google Scholar] [CrossRef]
- Ouyang, H.; Tang, R.; Zhong, P.; Zhang, X.; Li, J. CuI/I2-Promoted Electrophilic Tandem Cyclization of 2-Ethynylbenzaldehydes with ortho-Benzenediamines: Synthesis of Iodoisoquinoline-Fused Benzimidazoles. J. Org. Chem. 2011, 76, 223–228. [Google Scholar] [CrossRef]
- Liu, L.; Chen, D.; Yao, J.; Zong, Q.; Wang, J.; Zhou, H. CuX-Activated N-Halosuccinimide: Synthesis of 3-Haloquinolines via Electrophilic Cyclization of Alkynyl Imines. J. Org. Chem. 2017, 82, 4625–4630. [Google Scholar] [CrossRef]
- Unoh, Y.; Hirano, K.; Miura, M. Metal-Free Electrophilic Phosphination/Cyclization of Alkynes. J. Am. Chem. Soc. 2017, 139, 6106–6109. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.C.; Hernández, J.G.; Bolm, C. Synthesis of 3-Iodobenzofurans by Electrophilic Cyclization under Solventless Conditions in a Ball Mill. Eur. J. Org. Chem. 2018, 2018, 2458–2461. [Google Scholar] [CrossRef]
- Zhou, J.; Li, W.; Zheng, H.; Pei, Y.; Liu, X.; Cao, H. Visible Light-Induced Cascade Cyclization of 3-Aminoindazoles, Ynals, and Chalcogens: Access to Chalcogen-Containing Pyrimido [1,2-b]-indazoles. Org. Lett. 2021, 23, 2754–2759. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, F.; Yao, T.; Liu, X.; Liu, Y.; Liu, L. Dearomative Iodocyclization of N-(o-Alkynyl)aryl Isoindole. J. Org. Chem. 2022, 87, 7531–7535. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Chen, Y. Transition Metal-Mediated C=O and C=C Bond-Forming Reactions: A Regioselective Strategy for the Synthesis of Imidazo [1,2-a]pyridines and Imidazo [1,2-a]pyrazines. J. Org. Chem. 2014, 79, 11209–11214. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Zhao, L.; Cen, J.; Lin, J.; Zhu, Q.; Fu, M. One-Pot Regiospecific Synthesis of Imidazo[1,2-a]pyridines: A Novel, Metal-Free, Three-Component Reaction for the Formation of C–N, C–O, and C–S Bonds. Org. Lett. 2014, 16, 146–149. [Google Scholar] [CrossRef]
- Yang, D.; Yu, Y.; Wu, Y.; Feng, H.; Li, X.; Cao, H. One-Pot Regiospecific Synthesis of Indolizines: A Solvent-Free, Metal-Free, Three-Component Reaction of 2-(Pyridin-2-yl)acetates, Ynals, and Alcohols or Thiols. Org. Lett. 2018, 20, 2477–2480. [Google Scholar] [CrossRef]
- Tber, Z.; Hiebel, M.A.; El Hakmaoui, A.; Akssira, M.; Guillaumet, G.; Berteina-Raboin, S. Metal Free Formation of Various 3-Iodo-1H-pyrrolo [3′,2′:4,5]imidazo-[1,2-a]pyridines and [1,2-b]Pyridazines and Their Further Functionalization. J. Org. Chem. 2015, 80, 6564–6573. [Google Scholar]
- Luo, X.; Ge, L.; An, X.; Jin, J.; Wang, Y.; Sun, P.; Deng, W. Regioselective Metal-Free One-Pot Synthesis of Functionalized 2-Aminothiophene Derivatives. J. Org. Chem. 2015, 80, 4611–4617. [Google Scholar] [CrossRef]
- Wang, C.; Lai, J.; Chen, C.; Li, X.; Cao, H. Ag-Catalyzed Tandem Three-Component Reaction toward the Synthesis of Multisubstituted Imidazoles. J. Org. Chem. 2017, 82, 13740–13745. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, P.; Xu, F.; Qiu, R.; Tan, Q.; Long, L.; Ye, M. Lewis Acid-Catalyzed Intermolecular Annulation: Three-Component Reaction toward Imidazo[1,2-a]pyridine Thiones. J. Org. Chem. 2019, 84, 9369–9377. [Google Scholar] [CrossRef]
- Li, Z.; Ling, F.; Cheng, D.; Ma, C. Pd-Catalyzed Branching Cyclizations of Enediyne-Imides toward Furo[2,3-b]pyridines. Org. Lett. 2014, 16, 1822–1825. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Wang, J.; Song, G.; Tang, D.; Yao, F.; Lin, H.; Yan, W.; Li, H.; Xu, Z.; et al. Diversity-Oriented Synthesis of Imidazo-Dipyridines with Anticancer Activity via the Groebke–Blackburn–Bienaymé and TBAB-Mediated Cascade Reaction in One Pot. J. Org. Chem. 2019, 84, 12632–12638. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Lin, J.; Zhang, Z.; Wu, S.; He, Q.; Cao, H. Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2-b]indazole from 3-Aminoindazoles and Ynals. J. Org. Chem. 2021, 86, 9107–9116. [Google Scholar] [CrossRef]
- Rayadurgam, J.; Sana, S.; Sasikumar, M.; Gu, Q. Palladium catalyzed C–C and C–N bond forming reactions: An update on the synthesis of pharmaceuticals from 2015–2020. Org. Chem. Front. 2021, 8, 384–414. [Google Scholar] [CrossRef]
- Ding, Q.; Wu, J. Lewis Acid- and Organocatalyst-Cocatalyzed Multicomponent Reactions of 2-Alkynylbenzaldehydes, Amines, and Ketones. Org. Lett. 2007, 9, 4959–4962. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J. Efficient Generation of Biologically Active H-Pyrazolo[5,1-a]isoquinolines via Multicomponent Reaction. Org. Lett. 2010, 12, 4856–4859. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.; Chen, L.; Fu, J.; Zhu, J. Controllable synthesis of 3-iodo-2H-quinolizin-2-ones and 1,3-diiodo-2H-quinolizin-2-ones via electrophilic cyclization of azacyclic ynones. Chem Commun. 2019, 55, 12607–12610. [Google Scholar] [CrossRef]
- Dandapat, A.; Korupalli, C.; Prasad, D.J.C.; Singh, R.; Sekar, G. An Efficient Copper(I) Iodide Catalyzed Synthesis of Diaryl Selenides through CAr-Se Bond Formation Using Solvent Acetonitrile as Ligand. Synthesis 2011, 2011, 2297–2302. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, Q.; Dong, Z.; Xu, J.; Yang, Z. Rhodium-Catalyzed 1,1-Hydroacylation of Thioacyl Carbenes with Alkynyl Aldehydes and Subsequent Cyclization. Org. Lett. 2019, 21, 3594–3599. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, M.; Cai, Q.; Jia, F.; Wu, A. A Cascade Coupling Strategy for One-Pot Total Synthesis of β-Carboline and Isoquinoline-Containing Natural Products and Derivatives. Chem. Eur. J. 2013, 19, 10132–10137. [Google Scholar] [CrossRef]
- Zheng, A.; Zhang, W.; Pan, J. One-Pot and Convenient Conversion of 5-Azidopyrazole-4-carboxaldehyde to Pyrazolo[3,4-b]pyridines. Synth. Commun. 2006, 36, 1549–1556. [Google Scholar] [CrossRef]
- Shekarrao, K.; Kaishap, P.P.; Saddanapu, V.; Addlagatta, A.; Gogoi, S.; Boruah, R.C. Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Adv. 2014, 4, 24001–24006. [Google Scholar] [CrossRef]
- Hamama, W.S.; Ibrahim, M.E.; Zoorob, H.H. Synthesis and Biological Evaluation of Some Novel Isoxazole Derivatives. J. Heterocycl. Chem. 2017, 54, 341–346. [Google Scholar] [CrossRef]
- Iaroshenko, V.O.; Mkrtchyan, S.; Gevorgyan, A.; Miliutina, M.; Villinger, A.; Volochnyuk, D.; Sosnovskikh, V.Y.; Langer, P. 2,3-Unsubstituted chromones and their enaminone precursors as versatile reagents for the synthesis of fused pyridines. Org. Biomol. Chem. 2012, 10, 890–894. [Google Scholar] [CrossRef]
- Qiu, R.; Qiao, S.; Peng, B.; Long, J.; Yin, G. A mild method for the synthesis of bis-pyrazolo[3,4-b:4′,3′-e]pyridine derivatives. Tetrahedron Lett. 2018, 59, 3884–3888. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.-Y.; Hu, Y.-J.; Liu, F.-R.; Sun, Y.-Y.; Sun, D.; Wu, A.-X.; Zhu, Y.-P. Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules 2022, 27, 6381. https://doi.org/10.3390/molecules27196381
Miao X-Y, Hu Y-J, Liu F-R, Sun Y-Y, Sun D, Wu A-X, Zhu Y-P. Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules. 2022; 27(19):6381. https://doi.org/10.3390/molecules27196381
Chicago/Turabian StyleMiao, Xiao-Yu, Yong-Ji Hu, Fu-Rao Liu, Yuan-Yuan Sun, Die Sun, An-Xin Wu, and Yan-Ping Zhu. 2022. "Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches" Molecules 27, no. 19: 6381. https://doi.org/10.3390/molecules27196381
APA StyleMiao, X. -Y., Hu, Y. -J., Liu, F. -R., Sun, Y. -Y., Sun, D., Wu, A. -X., & Zhu, Y. -P. (2022). Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules, 27(19), 6381. https://doi.org/10.3390/molecules27196381