Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Durian Rind-Based Cellulose and Preparation of Cellulose Nanofiber
2.2. Performance of Durian Rind-Based CNF
2.3. Application of Durian Rind-Based CNF in Aerogel
3. Materials and Methods
3.1. Materials
3.2. Cellulose Extraction and Nanocellulose Fiber Preparation
3.3. Preparation of Aerogel
3.4. CNF Characterization
3.5. Aerogel Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Z.; Zhu, H.; Cheng, J.-H. Structure Modification and Property Improvement of Plant Cellulose: Based on Emerging and Sustainable Nonthermal Processing Technologies. Food Res. Int. 2022, 156, 111300. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Huang, R.; Zhou, M.; Chen, F.; Fu, Q. Hydrophobic Cellulose Films with Excellent Strength and Toughness Via Ball Milling Activated Acylation of Microfibrillated Cellulose. Carbohydr. Polym. 2016, 154, 129–138. [Google Scholar] [CrossRef]
- Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L.; Tanpichai, S. Review of The Recent Developments in All-Cellulose Nanocomposites: Properties and Applications. Carbohydr. Polym. 2022, 286, 119192. [Google Scholar] [CrossRef]
- Mendoza, L.; Hossain, L.; Downey, E.; Scales, C.; Batchelor, W.; Garnier, G. Carboxylated Nanocellulose Foams as Superabsorbents. J. Colloid Interface Sci. 2019, 538, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.; Ding, Y.; Keplinger, T. Review on Design Strategies and Applications of Metal-Organic Framework-Cellulose Composites. Carbohydr. Polym. 2022, 291, 119539. [Google Scholar] [CrossRef]
- Masrol, S.R.; Ibrahim, M.H.I.; Adnan, S. Chemi-Mechanical Pulping of Durian Rinds. Procedia Manuf. 2015, 2, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Roy, S.; Rhim, J.-W. Effects of Various Types of Cellulose Nanofibers on the Physical Properties of the CNF-Based Films. J. Environ. Chem. Eng. 2021, 9, 106043. [Google Scholar] [CrossRef]
- Kim, J.-K.; Choi, B.; Jin, J. Transparent, Water-Stable, Cellulose Nanofiber-Based Packaging Film with a Low Oxygen Permeability. Carbohydr. Polym. 2020, 249, 116823. [Google Scholar] [CrossRef]
- Morán, J.I.; Álvarez, V.; Cyras, V.P.; Vázquez, A. Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers. Cellulose 2007, 15, 149–159. [Google Scholar] [CrossRef]
- Sankhla, S.; Sardar, H.H.; Neogi, S. Greener Extraction of Highly Crystalline and Thermally Stable Cellulose Micro-Fibers from Sugarcane Bagasse for Cellulose Nano-Fibrils Preparation. Carbohydr. Polym. 2020, 251, 117030. [Google Scholar] [CrossRef]
- Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. A comparative study of Energy Consumption and Physical Properties of Microfibrillated Cellulose Produced by Different Processing Methods. Cellulose 2011, 18, 1097–1111. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Liu, Y.; Hai, Y.; Zhang, M.; Chen, P. Isolation and Characterization of Cellulose Nanofibers from Four Plant Cellulose Fibers Using a Chemical-Ultrasonic Process. Cellulose 2011, 18, 433–442. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wang, Z.; Wang, L. Ultrasound in Cellulose-Based Hydrogel for Biomedical Use: From Extraction to Preparation. Colloids Surfaces B Biointerfaces 2022, 212, 112368. [Google Scholar] [CrossRef] [PubMed]
- Voronova, M.I.; Lebedeva, T.N.; Radugin, M.V.; Surov, O.V.; Prusov, A.N.; Zakharov, A.G. Interactions of Water–DMSO Mixtures with Cellulose. J. Mol. Liq. 2006, 126, 124–129. [Google Scholar] [CrossRef]
- Harini, K.; Ramya, K.; Sukumar, M. Extraction of Nano Cellulose Fibers from the Banana Peel and Bract for Production of Acetyl and Lauroyl Cellulose. Carbohydr. Polym. 2018, 201, 329–339. [Google Scholar] [CrossRef]
- Fukuda, J.; Hsieh, Y.-L. Almond Shell Nanocellulose: Characterization and Self-Assembling into Fibers, Films, and Aerogels. Ind. Crop. Prod. 2022, 186, 115188. [Google Scholar] [CrossRef]
- Hosseini, M.; Dizaji, H.Z.; Taghavi, M.; Babaei, A.A. Preparation of Ultra-Lightweight and Surface-Tailored Cellulose Nanofibril Composite Cryogels Derived from Date Palm Waste as Powerful and Low-Cost Heavy Metals Adsorbent to Treat Aqueous Medium. Ind. Crops Prod. 2020, 154, 112696. [Google Scholar] [CrossRef]
- Benhamou, A.A.; Kassab, Z.; Boussetta, A.; Salim, M.H.; Ablouh, E.-H.; Nadifiyine, M.; Qaiss, A.E.K.; Moubarik, A.; Achaby, M.E. Beneficiation of Cactus Fruit Waste Seeds for the Production of Cellulose Nanostructures: Extraction and Properties. Int. J. Biol. Macromol. 2022, 203, 302–311. [Google Scholar] [CrossRef]
- Joshi, P.; Sharma, O.P.; Ganguly, S.K.; Srivastava, M.; Khatri, O.P. Fruit Waste-Derived Cellulose and Graphene-Based Aerogels: Plausible Adsorption Pathways for Fast and Efficient Removal of Organic Dyes. J. Colloid Interface Sci. 2022, 608, 2870–2883. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Rahman, N.A.; Mahadi, M.; Zuki, S.M.; Amin, K.M.; Wahab, M.; Lenggoro, I.W. Nanocellulose from Oil Palm Mesocarp Fiber Using Hydrothermal Treatment with Low Concentration of Oxalic Acid. Mater. Today Proc. 2022, 48, 1899–1904. [Google Scholar] [CrossRef]
- Nematollahi, R.; Ziyadi, H.; Ghasemi, E.; Taheri, H. Cinnamon Nanocellulose as a Novel Catalyst to Remove Methyl Orange from Aqueous Solution. Inorg. Chem. Commun. 2022, 137, 109222. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, S.; Zhang, N.; Zhang, J. Preparation and Characterization of Nanocrystalline Cellulose Via Low-Intensity Ultrasonic-Assisted Sulfuric Acid Hydrolysis. Cellulose 2014, 21, 335–346. [Google Scholar] [CrossRef]
- Tu, H.; Zhu, M.; Duan, B.; Zhang, L. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. Adv. Mater. 2020, 33, e2000682. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yu, H.; Li, Q.; Liu, Y.; Li, J. Ultralight and Highly Flexible Aerogels with Long Cellulose I Nanofibers. Soft Matter 2011, 7, 10360–10368. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Wang, Y.; Yi, X.; Zeng, J.; Yu, H.; Liu, Y.; Li, J. Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. ChemSusChem 2014, 7, 154–161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Fei, Y.; Cheng, J.; Wang, C.; Zhang, J.; Niu, C.; Fu, Q.; Cheng, J.; Lu, L. Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel. Molecules 2022, 27, 6507. https://doi.org/10.3390/molecules27196507
Xing H, Fei Y, Cheng J, Wang C, Zhang J, Niu C, Fu Q, Cheng J, Lu L. Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel. Molecules. 2022; 27(19):6507. https://doi.org/10.3390/molecules27196507
Chicago/Turabian StyleXing, Huwei, Yongsheng Fei, Jingru Cheng, Congcong Wang, Jingjing Zhang, Chenxi Niu, Qian Fu, Jiali Cheng, and Lingbin Lu. 2022. "Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel" Molecules 27, no. 19: 6507. https://doi.org/10.3390/molecules27196507
APA StyleXing, H., Fei, Y., Cheng, J., Wang, C., Zhang, J., Niu, C., Fu, Q., Cheng, J., & Lu, L. (2022). Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel. Molecules, 27(19), 6507. https://doi.org/10.3390/molecules27196507