Developing an Intelligent Data Analysis Approach for Marine Sediments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Input Data Set
2.2. Chemometrics Results
3. Materials and Methods
3.1. Sediment Sampling and Analysis
- -
- gas chromatography coupled to mass spectrometry for polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyl congeners (PCBs).
- -
- inductively coupled plasma—atomic absorption spectrometry (ICP-AAS) for metals as mobile and total forms (Cu, Zn, Ni, Cr), electrothermal AAS for Pb, and hybrid generation AAS for As.
3.2. Multivariate Statistical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Soroaga, L.V.; Amarandei, C.; Negru, A.G.; Olariu, R.I.; Arsene, C. Assessment of the Anthropogenic Impact and Distribution of Potentially Toxic and Rare Earth Elements in Lake Sediments from North-Eastern Romania. Toxics 2022, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Morrisey, D.; Underwood, A.; Stark, J.; Howitt, L. Temporal Variation in Concentrations of Heavy Metals in Marine Sediments. Estuar. Coast. Shelf Sci. 1994, 38, 282. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1981. [Google Scholar]
- U.S. Environmental Protection Agency. In Proceedings of the EPA’s Contaminated Sediment Management Strategy Forum. Office of Water, EPA. Available online: https://www.doi.gov/invasivespecies/epa (accessed on April 1998).
- Vakarelska, E.; Nedyalkova, M.; Vasighi, M.; Simeonov, V. Persistent organic pollutants (POPs)-QSPR classification models by means of machine learning strategies. Chemosphere 2022, 287, 132189. [Google Scholar] [CrossRef] [PubMed]
- Nedyalkova, M.; Simeonov, V. Chemomertic Risk Assessment of Soil Pollution. Open Chem. 2019, 17, 721. [Google Scholar] [CrossRef]
- Nedyalkova, M.; Donkova, B.V.; Simeonov, V. Chemometrics Expertise in the Links between Ecotoxicity and Physicochemical Features of Silver Nanoparticles: Environmental Aspects. J. AOAC Int. 2017, 100, 364. [Google Scholar] [CrossRef]
- Daskalakis, K.; O’Connor, T. Normalization and elemental sediment contamination in the coastal United States. Environ. Sci. Technol. 1995, 29, 470–477. [Google Scholar] [CrossRef]
- Loring, D. Lithium—A new approach for the granulometric normalization of trace metal data. Mar. Chem. 1990, 29, 168. [Google Scholar] [CrossRef]
- Ansari, T.; Marr, I.; Tariq, N. Heavy Metals in Marine Pollution Perspective—A Mini Review. J. Appl. Sci. 2003, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Islam, A.; Hasanuzzaman, M.; Salam, R.; Khan, R.; Islam, M. Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. J. Environ. Manag. 2021, 298, 113517. [Google Scholar] [CrossRef]
- Radomirović, M.; Tanaskovski, B.; Pezo, L.; Ceccotto, F.; Cantaluppi, C.; Onjia, A.; Stanković, S. Spatial and temporal distribution of pollution indices in marine surface sediments—A chemometric approach. Environ. Sci. Pollut. Res. 2021, 28, 42515. [Google Scholar] [CrossRef]
- da Silva Júnior, J.; Abreu, I.; de Oliveira, D.; Hadlich, G.; de Albergaria Barbosa, A. Combining geochemical and chemometric tools to assess the environmental impact of potentially toxic elements in surface sediment samples from an urban river. Mar. Pollut. Bull. 2020, 155, 111146. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, A.; Pedersen, K.; Bach, L.; Sternal, B.; Junttila, J.; Elberling, B. Applying Chemometrics to Determine Dispersion of Mine Tailing-Affected Sediments from Submarine Tailing Disposal in Bøkfjorden, Northern Norway. Water Air Soil Pollut. 2018, 229, 206. [Google Scholar] [CrossRef]
- Dalzell, C.; Todd Ventura, G.; Walters, C.; Nelson, R.; Reddy, C.; Seewald, J.; Sievert, S. Hydrocarbon transformations in sediments from the Cathedral Hill hydrothermal vent complex at Guaymas Basin, Gulf of California—A chemometric study of shallow seep architecture. Org. Geochem. 2021, 152, 104173. [Google Scholar] [CrossRef]
- Elumalai, V.; Sujitha, S.; Jonathan, M. Mercury pollution on tourist beaches in Durban, South Africa: A chemometric analysis of exposure and human health. Mar. Pollut. Bull. 2022, 180, 113742. [Google Scholar] [CrossRef] [PubMed]
- Perošević, A.; Pezo, L.; Joksimović, D.; Đurović, D.; Milašević, I.; Radomirović, M.; Stanković, S. The impacts of seawater physicochemical parameters and sediment metal contents on trace metal concentrations in mussels—A chemometric approach. Environ. Sci. Pollut. Res. 2018, 25, 28263. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Choi, J.; Moon, S.; Choi, J. Determination and Quantification of Heavy Metals in Sediments through Laser-Induced Breakdown Spectroscopy and Partial Least Squares Regression. Appl. Sci. 2021, 11, 7154. [Google Scholar] [CrossRef]
- Reczyński, W.; Szarłowicz, K.; Jakubowska, M.; Bitusik, P.; Kubica, B. Comparison of the sediment composition in relation to basic chemical, physical, and geological factors. Int. J. Sediment Res. 2020, 35, 314. [Google Scholar] [CrossRef]
- Petropoulos, A.; Kapsimalis, V.; Evelpidou, N.; Karkani, A.; Giannikopoulou, K. Simulation of the Nearshore Sediment Transport Pattern and Beach Morphodynamics in the Semi-Enclosed Bay of Myrtos, Cephalonia Island, Ionian Sea. J. Mar. Sci. Eng. 2022, 10, 1015. [Google Scholar] [CrossRef]
- Farmaki, E.; Thomaidis, N.; Pasias, I.; Rousis, N.; Baulard, C.; Papaharisis, L.; Efstathiou, C. Advanced multivariate techniques for the classification and pollution of marine sediments due to aquaculture. Sci. Total Environ. 2021, 763, 144617. [Google Scholar] [CrossRef]
- De Morais, C.; Babos, D.; Costa, V.; Neris, J.; Nicolodelli, G.; Mitsuyuki, M.; Mauad, F.; Mounier, S.; Milori, D. Direct determination of Cu, Cr, and Ni in river sediments using double pulse laser-induced breakdown spectroscopy: Ecological risk and pollution level assessment. Sci. Total Environ. 2022, 837, 155699. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Chang, F.; Ashraf, U.; Peng, W.; Wu, H.; Liu, Q.; Liu, F.; Zhang, Y.; Duan, L. Application of Corrected Methods for High-Resolution XRF Core Scanning Elements in Lake Sediments. Appl. Sci. 2020, 10, 8012. [Google Scholar] [CrossRef]
- Batistelli, M.; Martínez Bilesio, A.; García-Reiriz, A. Development of a fast and inexpensive method for detecting the main sediment sources in a river basin. Microchem. J. 2018, 142, 218. [Google Scholar] [CrossRef]
- Weisbrod, B.; Wood, S.A.; Steiner, K.; Whyte-Wilding, R.; Puddick, J.; Laroche, O.; Dietrich, D.R. Is a Central Sediment Sample Sufficient? Exploring Spatial and Temporal Microbial Diversity in a Small Lake. Toxins 2020, 12, 580. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Oliveri, P.; Klun, K.; Faganeli, J.; Covelli, S.; Adami, G. Trace elements in the estuarine systems of the Gulf of Trieste (northern Adriatic Sea): A chemometric approach to depict partitioning and behaviour of particulate, colloidal and truly dissolved fractions. Chemosphere 2020, 252, 126517. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Abdullah Al, M.; Islam, M.; Khadka, S.; Idris, A. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef]
- Moldovan, A.; Török, A.I.; Kovacs, E.; Cadar, O.; Mirea, I.C.; Micle, V. Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania. Sustainability 2022, 14, 8024. [Google Scholar] [CrossRef]
- European Commission Directive 2009/90/EC. Available online: https://www.eea.europa.eu/policy-documents/2009-90-ec (accessed on 1 August 2022).
- Massart, D.L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis; Wiley: New York, NY, USA, 1989; ISBN 978-089-464-358-3. [Google Scholar]
- Massart, D.L.; Vandeginste, B.G. Handbook of Chemometrics and Qualimetrics: Part B; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 978-044-482-853-8. [Google Scholar]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 25. [Google Scholar] [CrossRef]
- Hill, T.; Lewicki, P.; Lewicki, P. Statistics: Methods and Applications: A Comprehensive Reference for Science, Industry, and Data Mining; StatSoft, Inc.: Tulsa, OK, USA, 2006. [Google Scholar]
Area of Study | Input Data Set [Cases/ Variables] | Physicochem. Parameters | Mobile Form of Metals | Total Content of Metals and Nutrients | PAHs | PCBs |
---|---|---|---|---|---|---|
Zone A Anthropogen. impact | [49 × 34] | Humidity Loss of ignition | Cr-lab Zn-lab Cu-lab Ni-lab Pb-lab | N-tot P-tot As-tot Cr-tot Zn-tot Cu-tot Ni-tot Pb-tot | Naphtalene Acenaphtylene Acenaphtene Fluorene Phenanthrene Chrysene Anthracene Benzo(a)anthracene Benzo(b)fluoranthrene Benzo(k)fluoranthrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene ∑PAHs | PCB101 PCB138 PCB153 PCB180 ∑PCBs |
Zone B recreational | [105 × 34] | Humidity Loss of ignition | Cr-lab Zn-lab Cu-lab Ni-lab Pb-lab | N-tot P-tot As-tot Cr-tot Zn-tot Cu-tot Ni-tot Pb-tot | Naphtalene Acenaphtylene Acenaphtene Fluorene Phenanthrene Chrysene Anthracene Benzo(a)anthracene Benzo(b)fluoranthrene Benzo(k)fluoranthrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene ∑PAHs | PCB101 PCB138 PCB153 PCB180 ∑PCBs |
Zone C Industrial and domestic wastes impact | [20 × 34] | Humidity Loss of ignition | Cr-lab Zn-lab Cu-lab Ni-lab Pb-lab | N-tot P-tot As-tot Cr-tot Zn-tot Cu-tot Ni-tot Pb-tot | Naphtalene Acenaphtylene Acenaphtene Fluorene Phenanthrene Chrysene Anthracene Benzo(a)anthracene Benzo(b)fluoranthrene Benzo(k)fluoranthrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene ∑PAHs | PCB101 PCB138 PCB153 PCB180 ∑PCBs |
Variables | Intercept Unidentified Sources % | F1% PAH Pollution Source | F2% Metal Pollution Source | F3% PCB Pollution Source | F4% Nutrient Pollution Source | R2 Model Fit Measure |
---|---|---|---|---|---|---|
N-tot | ||||||
34.7 | - | - | - | 65.3 | 0.81 | |
P-tot | 29.0 | 12.2 | 44.6 | - | 14.2 | 0.87 |
Cr-lab. | 14.3 | 35.7 | 13.2 | - | 0.79 | |
36.8 | 9.2 | 46.1 | 7.7 | - | 0.86 | |
Zn-lab. | 37.0 | 5.1 | 63.3 | 5.2 | 3.1 | 0.81 |
2.8 | 49.5 | 3.4 | - | 0.77 | ||
Cu-lab. | 23.3 | 7.9 | 51.1 | 6.2 | - | 0.81 |
Ni-lab. | 44.3 | 9.2 | 64.1 | 4.7 | - | 0.79 |
Pb-lab. | 34.8 | - | 74.1 | 2.2 | - | 0.76 |
As-tot | 22.0 | 3.1 | 51.2 | 2.8 | 1.2 | 0.73 |
Cr-tot | 23.7 | 2.5 | 49.7 | 2.1 | - | 0.75 |
Zn-tot | 42.7 | - | 64.0 | - | - | 0.77 |
Cu-tot | 45.7 | 1.3 | 72.1 | - | - | 0.83 |
Ni-tot | 36.9 | 12.2 | 44.6 | - | 14.2 | 0.87 |
Pb-tot | 26.6 | 14.3 | 35.7 | 13.2 | - | 0.79 |
Sum PAHs | 17.6 | 82.4 | - | - | - | 0.84 |
Sum PCBs | 22.7 | - | - | 77.3 | - | 0.87 |
Variables | Intercept Unidentified Sources % | F1% PAH Pollution Source | F2% Metal Pollution Source | F3% PCB Pollution Source | F4% Nutrient Pollution Source | R2 Model Fit Measure |
---|---|---|---|---|---|---|
N-tot | ||||||
unsatisfactory | model | |||||
P-tot | unsatisfactory | model | ||||
Cr-lab. | unsatisfactory | model | ||||
Zn-lab. | 23.5 | 8.3 | 68.2 | 0.77 | ||
11.8 | 12.1 | 70.1 | 0.81 | |||
Cu-lab. | 24.4 | 10.7 | 64.9 | 0.84 | ||
Ni-lab. | 19.1 | 14.2 | 66.7 | 0.78 | ||
Pb-lab. | 23.5 | 8.3 | 68.2 | 0.77 | ||
As-tot | unsatisfactory | model | unsatisfactory | |||
Cr-tot | 18.5 | 72.4 | 9.1 | 0.79 | ||
Zn-tot | unsatisfactory | model | unsatisfactory | |||
Cu-tot | unsatisfactory | model | unsatisfactory | |||
Ni-tot | unsatisfactory | model | unsatisfactory | |||
Pb-tot | 18.2 | 5.6 | 62.3 | 7.1 | 0.84 | 5.6 |
Sum PAHs | 17.8 | 10.1 | 28.9 | 0.81 | ||
Sum PCBs | 20.1 | 79.9 | 0.79 | 79.9 |
Variables | Intercept Unidentified Sources % | F1% PAH Pollution Source | F2% Metal Pollution Source | F3% PCB Pollution Source | F4% Nutrient Pollution Source | R2 Model Fit Measure |
---|---|---|---|---|---|---|
N-tot | 8.4 | 47.2 | 3.2 | 4.4 | 0.84 | |
36.8 | - | - | 11.4 | 54.2 | 0.81 | |
P-tot | 34.4 | - | 9.9 | - | 55.7 | 0.79 |
Cr-lab. | 34.4 | - | 61.1 | 10.4 | 9.2 | 0.79 |
20.3 | 7.2 | 12.3 | 58.9 | - | 0.81 | |
Zn-lab. | 22.6 | 3.6 | 63.2 | 10.1 | 6.8 | 0.84 |
16.3 | 3.9 | 3.7 | 55.4 | 4.1 | 0.75 | |
Cu-lab. | 32.9 | - | 10.1 | 46.2 | - | 0.73 |
Ni-lab. | 43.7 | - | 11.1 | 54.2 | - | 0.75 |
Pb-lab. | 34.7 | - | - | 65.1 | 9.1 | 0.79 |
As-tot | 25.8 | - | 20.2 | - | 71.3 | 0.84 |
Cr-tot | 8.5 | - | - | 11.3 | 59.9 | 0.81 |
Zn-tot | 28.8 | - | 6.2 | 67.7 | 7.1 | 0.83 |
Cu-tot | 28.0 | 54.8 | - | 30.6 | - | 0.81 |
Ni-tot | 14.6 | 25.7 | 60.3 | - | - | 0.79 |
Pb-tot | 14.0 | 8.4 | 47.2 | 3.2 | 4.4 | 0.84 |
Sum PAHs | 36.8 | - | - | 11.4 | 54.2 | 0.81 |
Sum PCBs | 34.4 | - | 9.9 | - | 55.7 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedyalkova, M.; Simeonov, V. Developing an Intelligent Data Analysis Approach for Marine Sediments. Molecules 2022, 27, 6539. https://doi.org/10.3390/molecules27196539
Nedyalkova M, Simeonov V. Developing an Intelligent Data Analysis Approach for Marine Sediments. Molecules. 2022; 27(19):6539. https://doi.org/10.3390/molecules27196539
Chicago/Turabian StyleNedyalkova, Miroslava, and Vasil Simeonov. 2022. "Developing an Intelligent Data Analysis Approach for Marine Sediments" Molecules 27, no. 19: 6539. https://doi.org/10.3390/molecules27196539
APA StyleNedyalkova, M., & Simeonov, V. (2022). Developing an Intelligent Data Analysis Approach for Marine Sediments. Molecules, 27(19), 6539. https://doi.org/10.3390/molecules27196539