Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of the Solvent for Phenolic Compounds Recovery
2.2. Phenolic Compound Identification and Quantification
2.3. Antioxidant Activity of Extracts
2.4. Antibacterial Activity of Extracts
3. Materials and Methods
3.1. Chemicals and Plant Material
3.2. Deep Eutectic Solvents Preparation
3.3. Solid–Liquid Extraction of Phenolic Compounds from Avocado Peel
3.4. Determination of Total Phenolic and Flavonoid Content
3.5. Identification and Quantification of Individual Phenolic Compounds
3.6. Antioxidant Activity Evaluation
3.7. Antimicrobial Activity Evaluation
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araujo, R.G.; Rodríguez-Jasso, R.M.; Ruíz, H.A.; Govea-Salas, M.; Pintado, M.; Aguilar, C.N. Recovery of Bioactive Components from Avocado Peels Using Microwave-Assisted Extraction. Food Bioprod. Process. 2021, 127, 152–161. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations (FAOStat). Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 1 August 2022).
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Gullón, B.; Teixeira, J.A.; Botelho, C.M.; Yáñez, R. Exploiting the Potential of Bioactive Molecules Extracted by Ultrasounds from Avocado Peels—Food and Nutraceutical Applications. Antioxidants 2021, 10, 1475. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents–Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and Green Extraction of Bioactive Compounds from Lippia Citriodora by Tailor-Made Natural Deep Eutectic Solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Tiago, F.J.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Extraction of Bioactive Compounds From Cannabis Sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Front. Nutr. 2022, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of Natural Deep Eutectic Solvents for Extraction of Hydrophilic and Lipophilic Compounds from Fucus Vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef] [PubMed]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Pressurized Aqueous Solutions of Deep Eutectic Solvent (DES): A Green Emergent Extraction of Anthocyanins from a Brazilian Berry Processing by-Product. Food Chem. X 2022, 13, 100236. [Google Scholar] [CrossRef]
- Sukor, N.F.; Selvam, V.P.; Jusoh, R.; Kamarudin, N.S.; Rahim, S.A. Intensified DES Mediated Ultrasound Extraction of Tannic Acid from Onion Peel. J. Food Eng. 2021, 296, 110437. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae. Pharm. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Shikov, A.N.; Kosman, V.M.; Flissyuk, E.V.; Smekhova, I.E.; Elameen, A.; Pozharitskaya, O.N. Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola Rosea L. Molecules 2020, 25, 1826. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.-Y.; Song, J.-N.; Chang, Y.-Q.; Wang, L.; Zheng, Y.-G.; Zhang, D.; Guo, L. Natural Deep Eutectic Solvents for the Extraction of Bioactive Steroidal Saponins from Dioscoreae Nipponicae Rhizoma. Molecules 2021, 26, 2079. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline Chloride-Based Deep Eutectic Solvents as Potential Solvent for Extraction of Phenolic Compounds from Olive Leaves: Extraction Optimization and Solvent Characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef] [PubMed]
- Toledo Hijo, A.A.C.; Alves, C.; Farias, F.O.; Peixoto, V.S.; Meirelles, A.J.A.; Santos, G.H.F.; Maximo, G.J. Ionic Liquids and Deep Eutectic Solvents as Sustainable Alternatives for Efficient Extraction of Phenolic Compounds from Mate Leaves. Food Res. Int. 2022, 157, 111194. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep Eutectic Solvent-Based Ultrasonic-Assisted Extraction of Phenolic Compounds from Moringa Oleifera L. Leaves: Optimization, Comparison and Antioxidant Activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Gao, M.-Z.; Cui, Q.; Wang, L.-T.; Meng, Y.; Yu, L.; Li, Y.-Y.; Fu, Y.-J. A Green and Integrated Strategy for Enhanced Phenolic Compounds Extraction from Mulberry (Morus Alba L.) Leaves by Deep Eutectic Solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of Value-Added Components from Food Industry Based and Agro-Forest Biowastes by Deep Eutectic Solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef] [PubMed]
- de Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, Ó.L. Micro- and Nano Bio-Based Delivery Systems for Food Applications: In Vitro Behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Pavlić, B.; Mrkonjić, Ž.; Teslić, N.; Kljakić, A.C.; Pojić, M.; Mandić, A.; Stupar, A.; Santos, F.; Duarte, A.R.C.; Mišan, A. Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme (Thymus Serpyllum L.) Extracts. Molecules 2022, 27, 1508. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Peng, X.; Duan, M.-H.; Yao, X.-H.; Zhang, Y.-H.; Zhao, C.-J.; Zu, Y.-G.; Fu, Y.-J. Green Extraction of Five Target Phenolic Acids from Lonicerae Japonicae Flos with Deep Eutectic Solvent. Sep. Purif. Technol. 2016, 157, 249–257. [Google Scholar] [CrossRef]
- Oliveira, G.; Marques, C.; de Oliveira, A.; de Almeida dos Santos, A.; do Amaral, W.; Ineu, R.P.; Leimann, F.V.; Peron, A.P.; Igarashi-Mafra, L.; Mafra, M.R. Extraction of Bioactive Compounds from Curcuma Longa L. Using Deep Eutectic Solvents: In Vitro and in Vivo Biological Activities. Innov. Food Sci. Emerg. Technol. 2021, 70, 102697. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem. 2019, 295, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Corroto, E.; Plaza, M.; Marina, M.L.; García, M.C. Sustainable Extraction of Proteins and Bioactive Substances from Pomegranate Peel (Punica Granatum L.) Using Pressurized Liquids and Deep Eutectic Solvents. Innov. Food Sci. Emerg. Technol. 2020, 60, 102314. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Evaluation of New Natural Deep Eutectic Solvents for the Extraction of Isoflavones from Soy Products. Talanta 2017, 168, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional Ingredient from Avocado Peel: Microwave-Assisted Extraction, Characterization and Potential Applications for the Food Industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Ibarz, R.; Fernandes, J.-M.; Pinheiro, A.C.; Botelho, C.; Rocha, C.M.R.; Teixeira, J.A.; Martín-Belloso, O. Encapsulated Pine Bark Polyphenolic Extract during Gastrointestinal Digestion: Bioaccessibility, Bioactivity and Oxidative Stress Prevention. Foods 2021, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef] [PubMed]
- Dibacto, R.E.K.; Tchuente, B.R.T.; Nguedjo, M.W.; Tientcheu, Y.M.T.; Nyobe, E.C.; Edoun, F.L.E.; Kamini, M.F.G.; Dibanda, R.F.; Medoua, G.N. Total Polyphenol and Flavonoid Content and Antioxidant Capacity of Some Varieties of Persea Americana Peels Consumed in Cameroon. Sci. World J. 2021, 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Akayleh, F.; Khalid, R.M.; Hawash, D.; Al-Kaissi, E.; Al-Adham, I.S.I.; Al-Muhtaseb, N.; Jaber, N.; Al-Remawi, M.; Collier, P.J. Antimicrobial Potential of Natural Deep Eutectic Solvents. Lett. Appl. Microbiol. 2022, 75, 1–9. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, Cytotoxic and Antioxidative Evaluation of Natural Deep Eutectic Solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef] [PubMed]
- Wikene, K.O.; Rukke, H.V.; Bruzell, E.; Tønnesen, H.H. Investigation of the Antimicrobial Effect of Natural Deep Eutectic Solvents (NADES) as Solvents in Antimicrobial Photodynamic Therapy. J. Photochem. Photobiol. B Biol. 2017, 171, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Grujić, D.; Cerar, J.; Razboršek, M.I.; Topalić-Trivunović, L.; Savić, A.; Kočar, D.; Kolar, M. Extraction of Bioactive Metabolites from Achillea Millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 724. [Google Scholar] [CrossRef]
- Stanojević-Nikolić, S.; Dimić, G.; Mojović, L.; Pejin, J.; Djukić-Vuković, A.; Kocić-Tanackov, S. Antimicrobial Activity of Lactic Acid Against Pathogen and Spoilage Microorganisms. J. Food Process. Preserv. 2016, 40, 990–998. [Google Scholar] [CrossRef]
- Hong, Y.F.; Kim, H.; Bang, M.H.; Kim, H.S.; Kim, T.R.; Park, Y.H.; Chung, D.K. Effects of NaCL and Organic Acids on the Antimicrobial Activity of Chitosan. Korean J. Microbiol. Biotechnol. 2014, 42, 413–416. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Muñiz-Mouro, A.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Green Approaches for the Extraction of Antioxidants from Eucalyptus Leaves. Ind. Crops Prod. 2019, 138, 111473. [Google Scholar] [CrossRef]
- Tan Mei Chin, B.; Ali, A.; Kamal, H.; Mustafa, M.A.; Khaliq, G.; Siddiqui, Y. Optimizing Parameters on the Antioxidant Capacity of Watermelon Pulp Using Conventional Orbital Shaker and Ultrasound-Assisted Extraction Methods. J. Food Process. Preserv. 2021, 45, e15123. [Google Scholar] [CrossRef]
- Blasa, M.; Candiracci, M.; Accorsi, A.; Piacentini, M.P.; Albertini, M.C.; Piatti, E. Raw Millefiori Honey Is Packed Full of Antioxidants. Food Chem. 2006, 97, 217–222. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus Pinaster Bark Extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullón, B.; Gullón, P.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Optimization of Solvent Extraction of Antioxidants from Eucalyptus Globulus Leaves by Response Surface Methodology: Characterization and Assessment of Their Bioactive Properties. Ind. Crops Prod. 2017, 108, 649–659. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
Abbreviations | Component 1 | Component 2 | Component 3 | Molar Ratio | Price (€/kg) | References |
---|---|---|---|---|---|---|
DES 1 | Lactic acid | Sodium acetate | - | 3:1 | 119.91 | El Kantar et al. [26] |
DES 2 | Acetic acid | Choline chloride | Water | 1:1:10 | 8.75 | Hernández-Corroto et al. [27] |
DES 3 | Glycerol | Choline chloride | - | 3:1 | 129.93 | Ozturk et al. [7] |
DES 4 | Glycerol | Citric acid | - | 2:1 | 96.03 | Bajkacz and Adamek [28] |
DES 5 | Lactic acid | Choline chloride | - | 3:1 | 33.50 | El Kantar et al. [26] |
Phenolic Compound | Catechin (mg/100 g) | 3,4 HBA (mg/100 g) | 2,5 HBA (mg/100 g) | Gallic acid (mg/100 g) | Epicatechin (mg/100 g) | Ferulic acid (mg/100 g) | Rutin (mg/100 g) | Total (mg/100 g) |
---|---|---|---|---|---|---|---|---|
Ethanol | 236.4 ± 10.3 e | 0.3 ± 0.0 c | n.d. | 0.9 ± 0.1 e | 32.8 ± 0.3 b | 3.3 ± 0.0 e | 44.0 ± 0.2 e | 318 |
DES 1 | 478.4 ± 2.4 bc | n.d. | n.d. | 76.7 ± 0.5 a | 25.9 ± 0.1 c | 6.8 ± 0.1 c | 98.0 ± 0.5 b | 686 |
DES 2 | 319.0 ± 7.1 a | 17.1 ± 2.6 a | 12.1 ± 0.1 b | 22.3 ± 2.3 d | 35.3 ± 0.3 a | 7.6 ± 0.0 b | 103.1 ± 0.2 a | 829 |
DES 3 | 406.7 ± 46.5 d | 8.4 ± 0.0 b | n.d. | 1.7 ± 0.1 e | 17.8 ± 0.1 d | 8.0 ± 0.0 a | 95.5 ± 1.0 c | 450 |
DES 4 | 521.5 ± 73.5 c | 15.9 ± 0.7 a | 22.0 ± 1.2 a | 55.0 ± 0.7 c | 33.3 ± 2.7 ab | 6.1 ± 0.1 d | 81.9 ± 0.3 d | 621 |
DES 5 | 347.9 ± 49.0 b | n.d. | 10.9 ± 0.2 c | 71.0 ± 1.3 b | 18.1 ± 0.1 d | 6.4 ± 0.1 d | 102.2 ± 0.1 a | 730 |
Extract | FRAP (mg TE/g DAP) | TAC (mg AAE/g DAP) |
---|---|---|
Ethanol | 46.4 ± 3.4 d | 61.9 ± 7.2 c |
DES 1 | 107.3 ± 6.4 b | 122.4 ± 11.8 a |
DES 2 | 115.4 ± 7.5 ab | 121.9 ± 7.6 a |
DES 3 | 84.5 ± 2.7 c | 90.0 ± 7.7 b |
DES 4 | 72.5 ± 3.5 c | 91.1 ± 3.8 b |
DES 5 | 121.1 ± 8.9 a | 126.1 ± 11.5 a |
Variables | TPC | TFC | FRAP | TAC |
---|---|---|---|---|
TPC | 1.00 | - | - | - |
TFC | 0.73 | 1.00 | - | - |
FRAP | 0.83 | 0.93 | 1.00 | - |
TAC | 0.82 | 0.85 | 0.98 | 1.00 |
Bacteria | Gram-Positive | Gram-Negative | ||||||
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus | R/I/S | Streptococcus dysgalactiae subsp. equisimilis | R/I/S | Escherichia coli | R/I/S | Pseudomonas putida | R/I/S | |
Antibiotic (mm) | 34.0 ± 1.0 c (AMP) | S | 31.0 ± 0.0 d (AMP) | S | 27.0 ± 2.0 ef (AMP) | S | 26.0 ± 1.0 g (TC) | S |
Pure DES (mm) | ||||||||
DES 1 | 33.0 ± 0.0 c | S | 38.0 ± 1.0 b | S | 31.5 ± 0.5 d | S | 36.0 ± 0.5 cd | S |
DES 2 | 29.5 ± 0.5 d | S | 37.5 ± 0.5 b | S | 23.5 ± 0.5 f | S | 34.0 ± 1.0 de | S |
DES 3 | 15.0 ± 1.0 e | I | n.a. | I | n.a. | R | 12.0 ± 0.5 h | R |
DES 4 | 27.0 ± 1.5 d | S | 29.5 ± 0.5 d | S | 24.0 ± 1.0 f | S | 29.5 ± 1.5 f | S |
DES 5 | 27.5 ± 1.5 d | S | 33.5 ± 0.5 c | S | 29.5 ± 0.5 e | S | 35.5 ± 0.5 cd | S |
DMSO 10% | n.a. | R | n.a. | R | n.a. | R | n.a. | R |
Extracts (mm) | ||||||||
DES 1 | 40.0 ± 1.0 b | S | 42.5 ± 0.5 a | S | 36.0 ± 0.5 b | S | 43.5 ± 1.5 a | S |
DES 2 | 42.0 ± 0.0 a | S | 42.0 ± 1.0 a | S | 39.0 ± 1.0 a | S | 40.0 ± 1.0 b | S |
DES 3 | 16.0 ± 1.0 e | I | 17.0 ± 1.0 e | I | n.a. | R | 14.0 ± 1.0 h | I |
DES 4 | 30.5 ± 0.5 d | S | 32.5 ± 0.5 c | S | 28.5 ± 0.5 e | S | 33.5 ± 0.5 e | S |
DES 5 | 33.5 ± 0.5 c | S | 38.0 ± 1.0 b | S | 34.5 ± 0.5 c | S | 38.5 ± 1.5 b | S |
Ethanol | 14.0 ± 1.0 e | I | 15.5 ± 0.5 e | I | n.a. | R | 10.5 ± 2.0 h | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Martínez, B.; Ferreira-Santos, P.; Alfonso, I.M.; Martínez, S.; Genisheva, Z.; Gullón, B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules 2022, 27, 6646. https://doi.org/10.3390/molecules27196646
Rodríguez-Martínez B, Ferreira-Santos P, Alfonso IM, Martínez S, Genisheva Z, Gullón B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules. 2022; 27(19):6646. https://doi.org/10.3390/molecules27196646
Chicago/Turabian StyleRodríguez-Martínez, Beatriz, Pedro Ferreira-Santos, Irene Méndez Alfonso, Sidonia Martínez, Zlatina Genisheva, and Beatriz Gullón. 2022. "Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels" Molecules 27, no. 19: 6646. https://doi.org/10.3390/molecules27196646
APA StyleRodríguez-Martínez, B., Ferreira-Santos, P., Alfonso, I. M., Martínez, S., Genisheva, Z., & Gullón, B. (2022). Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules, 27(19), 6646. https://doi.org/10.3390/molecules27196646