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Abstract: Monoamine oxidases (MAOs) are an important group of enzymes involved in the degra-
dation of neurotransmitters and their imbalanced mode of action may lead to the development of
various neuropsychiatric or neurodegenerative disorders. In this work, we report the results of an
in-depth computational study in which we performed a static and a dynamic analysis of a series of
substituted β-carboline natural products, found mainly in roasted coffee and tobacco smoke, that
bind to the active site of the MAO-A isoform. By applying molecular docking in conjunction with
structure-based pharmacophores and molecular dynamics simulations coupled with dynamic phar-
macophores, we extensively investigated the geometric aspects of MAO-A binding. To gain insight
into the energetics of binding, we used the linear interaction energy (LIE) method and determined
the key anchors that allow productive β-carboline binding to MAO-A. The results presented herein
could be applied in the rational structure-based design and optimization of β-carbolines towards
preclinical candidates that would target the MAO-A enzyme and would be applicable especially in
the treatment of mental disorders such as depression.

Keywords: monoamine oxidase; β-carbolines; depression; linear interaction energy

1. Introduction

Monoamine oxidases (MAOs) are an important group of enzymes responsible for
the oxidative deamination of amine neurotransmitters, primarily in the central nervous
system, thereby regulating their levels. When the function of MAOs is increased, this can
lead to the development of mental disorders (e.g., autism and depression), and even their
normal function is associated with the production of hydrogen peroxide, which can lead
to neuronal damage and the development of neurodegenerative disorders (Parkinson’s or
Alzheimer’s disease).

MAOs exist in two distinct isoforms, MAO-A and MAO-B, which share about 70%
homology in their sequence but differ in some parts of their structure, tissue distribution,
and selectivity—MAO-A preferentially metabolizes serotonin and norepinephrine, whereas
MAO-B predominantly degrades dopamine [1]. Both isoenzymes contain in their active
site the FAD (flavin adenine dinucleotide) co-factor bound to one of the cysteine residues.
The overall catalytic cycle of MAOs begins with the conversion of the amine substrate
to the corresponding imine, which is followed by the regeneration of the reduced flavin
cofactor (FADH2) with molecular oxygen. The latter is the part of the catalytic cycle in
which hydrogen peroxide is formed. The rate-limiting step of this cycle is the cleavage of
the C-H bond, vicinal to the amino group and the subsequent transfer of the hydrogen atom
to the flavin cofactor. There are several proposals for the mechanism of the rate-limiting
step [2–8], with most evidence pointing to the hydride transfer mechanism [9–13].

Because of their involvement in the development of neurodegenerative and neuropsy-
chiatric diseases, MAOs are intriguing targets for drug development, several of which
are already on the market. The best-known drugs are the MAO-B-specific rasagiline and
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selegiline (both used mainly to treat Parkinson’s disease) and the MAO-A-specific moclobe-
mide (used mainly to treat depression). In addition, studies have shown that smoking can
also affect the activity of MAO. Results interestingly suggest that tobacco smokers have
up to 28% lower brain MAO-A activity and 40% lower brain MAO-B activity compared
with nonsmokers [14,15]. Considering the involvement of MAOs in the development of
neurodegenerative diseases, this may be related to the lowest rate of Parkinson’s disease
in smokers [16]. Several studies suggest that β-carbolines which are found primarily in
tobacco smoke, coffee, dark chocolate, salmon, raisins, certain spices, cooked foods, and
alcoholic beverages, among others [17], are responsible for the inhibition of MAO [18].

β-carbolines (or harmala alkaloids) are naturally occurring, biologically active alkaloids
that are derivatives of indole [19] and whose basic structural element is shown in Figure 1.
They were first isolated from the plant Peganum harmala, a succulent in the Nitrariaceae fam-
ily [19], but are also found in several other plant families [20]. Some of the harmala alkaloids
are the reason for the hallucinogenic properties of ayahuasca, a psychoactive drink used
in spiritual ceremonies in South America and Africa [21,22]. They not only inhibit MAO
enzymes but are also known to produce a variety of different effects in the body, with
their mechanism of action being associated with imidazole [23,24], serotonin [25], benzodi-
azepine [26] and dopamine receptors [27,28], as well as affecting cerebral neurotransmitter
concentrations [29]. They have also been shown to intercalate into DNA [30–32], inter-
act with DNA topoisomerases [31], and have a protective role against oxidative stress in
human tissues when accumulated [33]. Other studies focused on their antiplatelet [34],
antimalarial [35] and antidepressant effects [36]. The latter, in particular, was the main topic
of many studies and some specific β-carbolines have been analyzed in detail. Harman
has been shown to reduce depressive behavior in animals, presumably through several
different modes of action [37–39], the most important of which is MAO-A inhibition [40].
Similarly, preclinical studies have shown that harmine has a potential antidepressant effect
in various depression models [39,41,42]. Currently WHO estimates that depression affects
about 280 million people worldwide. This gives rise to the urgent need to develop new
antidepressants that can effectively treat depression and improve the quality of life of those
affected [43].
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Figure 1. Left: monoamine oxidase A enzyme. Top right: active site of monoamine oxidase A with 
the flavin adenine nucleotide (FAD) cofactor and the bound β-carboline harmine (HRM). Bottom 
right: basic tricyclic structural element and the numbering of the β-carbolines. 
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variety of computational approaches. The study is based on a series of differently substi-
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later extended this with a more dynamic approach. Within the latter, we performed mo-
lecular dynamics (MD) simulations of the considered β-carbolines and analyzed their ge-
ometry (RMSD), interactions with the MAO-A active site (dynophores) and calculated 
their predicted binding free energy (with the linear interaction energy method). All the 
data obtained could be used to develop new MAO-A selective inhibitors that could po-
tentially be used in the effective treatment of mental disorders, especially depression. 

2. Results 
2.1. Static Insight into the β-Carboline–MAO-A Molecular Recognition 

We began our computational analysis of a selected series of β-carbolines 1–11, which 
bind non-covalently into the active site of the MAO-A isoform, with a static view of our 
system. A crystal structure of MAO-A with harmine (compound 6), a β-carboline that acts 
as a reversible MAO-A inhibitor, had already been determined (PDB code 2Z5X), provid-
ing an excellent starting point for our study [47]. Thus, we were able to first redock 
harmine into the MAO-A active site and deduce whether our docking software is able to 
reproduce the observed X-ray binding pose. For this purpose, we used three different 
scoring functions, available in GOLD [49], namely: GoldScore, ChemScore and ChemPLP. 
All three scoring functions were able to successfully reproduce the X-ray binding pose 
(see Supplementary Materials, Figure S14). Consequently, we were able to proceed with 
docking the remainder of the compounds studied. 

Using the LigandScout program package [50], we then visualized the key intermo-
lecular interactions by generating a 3D structure-based pharmacophore for harmine (com-
pound 6, Figure 2A), 6-methoxyharmalan (compound 10, Figure 2B), and other β-car-
bolines based on the binding modes determined using the GoldScore scoring function. In 
the X-ray-determined binding model of harmine in the MAO-A active site, researchers 
previously concluded that harmine interacts with Tyr69, Asn181, Phe208, Val210, Gln215, 
Cys323, Ile325, Ile335, Leu337, Phe352, Tyr407, Tyr444, and the cofactor flavin adenine 
dinucleotide (FAD), with seven water molecules occupying the space between harmine 
and these amino acids [47]. Our pharmacophore model detects interactions of harmine 

Figure 1. Left: monoamine oxidase A enzyme. Top right: Active site of monoamine oxidase A with
the flavin adenine nucleotide (FAD) cofactor and the bound β-carboline harmine (HRM). Bottom
right: basic tricyclic structural element and the numbering of the β-carbolines.

We can divide the β-carbolines into three groups based on the saturation of one of
their rings: fully aromatic β-carbolines, dihydro-β-carbolines which are partially saturated,
and fully saturated tetrahydro-β-carbolines [44]. All usually contain different substituents
on one of their three rings. Depending on the surrounding solvent and pH, the compounds
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can exist in one of four states: as a cation, in neutral form, as a zwitterion, or as an anion [45].
Studies focusing on the selectivity of some β-carbolines have found that a methyl group on
the C1 atom appears to be critical for the compounds to be selective towards MAO-A rather
than MAO-B—norharman (without substituents) is 10–20 times less active as a MAO-A
inhibitor, but two orders of magnitude more active as a MAO-B inhibitor than harman
or harmaline (both have a methyl group at position 1) [46]. A crystal structure of one
of the fully aromatic β-carbolines (harmine, methyl group at position 1 and a methoxy
group at position 7) bound to the active site of MAO-A was determined [47] (Figure 1) and
harmine was characterized as a reversible MAO-A inhibitor. This crystal structure presents
an excellent starting point for our computational studies.

The aim of the present work was to study the binding properties and molecular
recognition between β-carbolines and the MAO-A isoform at the atomistic level by applying
a variety of computational approaches. The study is based on a series of differently
substituted β-carbolines [48], and we sought to first gain a static insight into their binding
and later extended this with a more dynamic approach. Within the latter, we performed
molecular dynamics (MD) simulations of the considered β-carbolines and analyzed their
geometry (RMSD), interactions with the MAO-A active site (dynophores) and calculated
their predicted binding free energy (with the linear interaction energy method). All the data
obtained could be used to develop new MAO-A selective inhibitors that could potentially
be used in the effective treatment of mental disorders, especially depression.

2. Results
2.1. Static Insight into the β-Carboline–MAO-A Molecular Recognition

We began our computational analysis of a selected series of β-carbolines 1–11, which
bind non-covalently into the active site of the MAO-A isoform, with a static view of our
system. A crystal structure of MAO-A with harmine (compound 6), a β-carboline that
acts as a reversible MAO-A inhibitor, had already been determined (PDB code 2Z5X),
providing an excellent starting point for our study [47]. Thus, we were able to first redock
harmine into the MAO-A active site and deduce whether our docking software is able
to reproduce the observed X-ray binding pose. For this purpose, we used three different
scoring functions, available in GOLD [49], namely: GoldScore, ChemScore and ChemPLP.
All three scoring functions were able to successfully reproduce the X-ray binding pose
(see Supplementary Materials, Figure S14). Consequently, we were able to proceed with
docking the remainder of the compounds studied.

Using the LigandScout program package [50], we then visualized the key inter-
molecular interactions by generating a 3D structure-based pharmacophore for harmine
(compound 6, Figure 2A), 6-methoxyharmalan (compound 10, Figure 2B), and other β-
carbolines based on the binding modes determined using the GoldScore scoring function.
In the X-ray-determined binding model of harmine in the MAO-A active site, researchers
previously concluded that harmine interacts with Tyr69, Asn181, Phe208, Val210, Gln215,
Cys323, Ile325, Ile335, Leu337, Phe352, Tyr407, Tyr444, and the cofactor flavin adenine
dinucleotide (FAD), with seven water molecules occupying the space between harmine
and these amino acids [47]. Our pharmacophore model detects interactions of harmine
with six of these groups (Tyr69, Phe208, Phe352, Ile335, Tyr407, and Tyr444) as well as an
additional interaction with Ile180 and hydrogen bonds with the conserved water molecules
(Figure 2A).

We can roughly divide the studied set of β-carbolines into two substructural groups:
those that are neutral (compounds 1, 3, 6, 9, and 10) and those that have a positive charge
on the pyridine nitrogen atom (2, 4, 5, 7, 8, and 11), with some important differences
in the pharmacophores of the two groups. All neutral compounds (except inhibitor 9)
exhibit hydrophobic interactions of all three aromatic β-carboline rings with MAO-A
active site residues, namely tyrosine (Tyr407), isoleucines (Ile180, Ile335), leucine (Leu337),
phenylalanines (Phe208, Phe352), and methionine (Met350). The addition of a methyl
group to the inhibitor structure leads to a further hydrophobic interaction with the active
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site tyrosines (Tyr407 and Tyr444). In all neutral β-carbolines, the pyridine nitrogen atom
acts as a hydrogen bond acceptor (interaction with tyrosine residues), while the pyrrole
nitrogen acts as a hydrogen bond donor (interaction with the conserved water molecules).
The pharmacophore models predict no additional interactions as a result of the addition of
the methoxy group (compounds 6, 9, and 10).
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Figure 2. (A) 3D (top) and 2D (bottom) structure-based pharmacophore model for harmine (com-
pound 6) docked in the MAO-A active site. (B)) 3D (top) and 2D (bottom) structure-based pharma-
cophore model for 6-methoxy harmalan (compound 10) docked in the MAO-A active site. Yellow
spheres represent favorable areas of the ligand for hydrophobic interactions while green and red
arrows denote the identified H-bond donors and acceptor interactions, respectively. (C) GoldScore,
ChemScore and ChemPLP scoring functions compared to experimentally observed binding free
energy of compounds 1–11.

For the β-carbolines with a positive charge on the pyridine nitrogen atom (compounds
2, 4, 5, 7, 8, and 11), pharmacophore models generally predict fewer interactions than
for the neutral β-carbolines. The focus in this group is on the hydrophobic interactions
formed between the active site residues and the benzene ring portion of the β-carboline
structure. In contrast to what we found for the neutral β-carboline group, in this case, we
see interactions occurring with the oxygen atom of the methoxy group. The latter acts as
a hydrogen bond acceptor with water or with one of the MAO-A active site tyrosines. In
addition, for compounds 8 and 11, the model predicts an interaction between the positively
charged nitrogen atom and a phenylalanine residue.

Furthermore, we wanted to determine if there was a correlation between the experi-
mentally determined binding free energies of the β-carbolines and the values predicted by
all three scoring functions available in GOLD: GoldScore, ChemScore, and ChemPLP. That
is, we wanted to determine whether a more negative free energy of binding (i.e., a smaller
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inhibition constant Ki, meaning that the compound is a better inhibitor) corresponds to
a higher scoring function value and vice versa. Our results show that there is little to
no correlation between the values of the scoring functions and the experimentally deter-
mined binding free energy (see Figure 2C). This is not surprising since docking is usually
a good predictor of the binding geometry but generally fails in exactly predicting the
binding energy [51]. To obtain this information, we need to use more thorough dynamical
methods [52], so we have extended our study to include MD simulations.

2.2. Binding Free Energies of β-Carbolines

Following the established linear interaction energy (LIE) protocol, we first calculated
the interaction energies between compounds 1–11 in the aqueous environment (free state,
see Figure 3A, left) and in the protein active site (bound state, see Figure 3A, right). For all
compounds considered, the interaction energy in the bound state is more favorable than in
the free state (by about 3–10 kcal mol−1, depending on the compound), which is in line with
our expectations and indicates that the binding of the compounds is energetically favored.
Interestingly, splitting the interaction energy into the van der Waals and electrostatic
components shows that the bound state is energetically more favorable with respect to the
van der Waals component, while the opposite is true for the electrostatic component. This
is not surprising since the active site of MAO-A is highly hydrophobic (as confirmed by our
additional detailed active site analysis), so it is to be expected that van der Waals interactions
are the predominant driving force for binding these β-carbolines. The compounds may
form more electrostatic interactions in water than in the very hydrophobic active site.
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ues by using the standard formula: 

Figure 3. (A) Outline of the defined bound and free state for compound 2. (B) Interaction en-
ergy decomposition for compound 2: van der Waals (top, vdW) and electrostatic (bottom, el.
stat.) energy component between compound 2 and its surroundings—water in the free state
(blue) and solvated protein in the bound state (orange) during the whole molecular dynamics
simulation. (C) Experimental- and LIE-calculated binding free energies together with error bars
for compounds 1–11.
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In general, the observed fluctuations (i.e., standard deviations) for the electrostatic
contributions of charged compounds 1, 3, 6, 9, and 10 (average standard deviation of
1.9 kcal mol−1) are higher than for neutral compounds 2, 4, 5, 7, 8, and 11 (average stan-
dard deviation of 1.0 kcal mol−1), which is consistent with our expectations because the
electrostatics of charged moieties are expected to fluctuate more than those of their neutral
counterparts. The fluctuations for the van der Waals contributions are generally smaller,
with no significant difference between the charged and uncharged β-carbolines (0.7 and
0.6 kcal mol−1, respectively) (Table 1).

Table 1. Average van der Waals and electrostatic interaction energy between β-carbolines 1–11 (L)
and their surroundings (solvated protein P or aqueous solution W) obtained from MD simulations.
Standard deviations are also given and were calculated from ten subsequent molecular dynamics
simulation steps.

Compound 〈VvdW
L−P〉

[kcal mol−1]
〈VvdW

L−W〉
[kcal mol−1]

〈VvdW
L−P−VvdW

L−W〉
[kcal mol−1]

〈Vel
L−P〉

[kcal mol−1]
〈Vel

L−W〉
[kcal mol−1]

〈Vel
L−P−Vel

L−W〉
[kcal mol−1]

1 −28.4 ± 0.5 −15.4 ± 0.1 −13.1 ± 0.5 −15.1 ± 1.6 −22.2 ± 0.1 +7.1 ± 1.6
2 * −36.7 ± 0.5 −17.9 ± 0.1 −18.9 ± 0.5 −84.1 ± 2.2 −98.0 ± 0.2 +13.9 ± 2.2
3 −32.5 ± 0.3 −16.8 ± 0.1 −15.7 ± 0.3 −15.7 ± 0.9 −23.6 ± 0.1 +7.9 ± 0.9

4 * −38.2 ± 0.8 −19.4 ± 0.1 −17.7 ± 0.8 −82.9 ± 1.6 −96.9 ± 0.1 +14.0 ± 1.6
5 * −39.8 ± 1.0 −22.7 ± 0.1 −17.1 ± 1.0 −77.6 ± 0.7 −86.5 ± 0.2 +8.9 ± 0.7
6 −36.9 ± 0.4 −19.6 ± 0.1 −17.2 ± 0.4 −17.0 ± 1.2 −24.5 ± 0.1 +7.2 ± 1.2

7 * −42.3 ± 1.0 −22.0 ± 0.1 −20.3 ± 1.0 −78.9 ± 4.1 −96.7 ± 0.2 +17.8 ± 4.1
8 * −43.9 ± 0.7 −25.3 ± 0.1 −18.6 ± 0.7 −74.5 ± 1.6 −87.5 ± 0.2 +12.9 ± 1.6
9 −41.9 ± 1.0 −20.6 ± 0.1 −21.2 ± 1.0 −9.7 ± 0.6 −23.4 ± 0.1 +13.7 ± 0.6

10 −39.5 ± 0.6 −20.7 ± 0.1 −18.8 ± 0.6 −12.9 ± 0.7 −23.3 ± 0.1 +10.4 ± 0.7
11 * −41.0 ± 0.2 −22.6 ± 0.1 −18.4 ± 0.2 −81.1 ± 1.1 −96.8 ± 0.2 +15.7 ± 1.1

* Inhibitors that are charged.

Figure 3B shows the values of the van der Waals and electrostatic components of the
interaction energy for β-carboline 2 over the course of the MD simulation in the bound
and free states. The van der Waals component of the interaction energy varies between
−10 and −25 kcal mol−1 in the free state and between −30 and −40 kcal mol−1 in the
bound state. There is a clear separation between the two states, with a clear preference
for the bound state. On the other hand, the electrostatic component varies between −70
and −100 kcal mol−1 in the bound state and between −70 and −130 kcal mol−1 in the free
state, with a clear overlap between the two states. In this case, the fluctuations are slightly
larger than for the van der Waals component, and we can infer a slight preference for the
free state, but the distinction between the two states is much less pronounced.

The experimentally determined inhibition constants (Ki) for the examined compounds
were taken from ref. [48]. The binding free energy was calculated from these values by
using the standard formula:

∆Gbinding = RT ln Ki (1)

where R is the gas constant and T is the temperature. The binding free energy was calculated
according to the LIE formalism, as described in the computational methods section. The
values determined for the coefficients α, β and γ were 0.54, 0.26 and −2.65, respectively,
resulting in the final LIE equation:

∆Gbinding = 0.54
(〈

VvdW
L−P

〉
−
〈

VvdW
L−W

〉)
+ 0.26

(〈
Vel

L−P

〉
−
〈

Vel
L−W

〉)
− 2.65 (2)

Coefficient α is, therefore, parameterized to be larger than coefficient β, giving greater
weight to the van der Waals component of the interaction energy, which in turn is consistent
with the hydrophobicity of the active site and the compounds themselves. It should be
noted that similar α and β coefficients have been frequently determined in LIE studies
of various bio-macromolecular systems [53–55]. The experimentally derived and the
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calculated binding free energies for all investigated β-carbolines are listed in Table 2, along
with the average RMSD values of the ligand for the duration of the MD simulation.

Table 2. Calculated binding free energies of β-carbolines 1–11 compared with the available experi-
mental results (obtained from ref. [48]) and average RMSD values for each ligand (for RMSD graphs
of all compounds along the duration of molecular dynamics simulations see Supplementary Materials,
Figures S1–S11).

Compound Structure Ki
[µM]

∆Gexp
binding

[kcal mol−1]
∆Gcalc

binding
[kcal mol−1]

RMSD
[Å]

1
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lated according to the LIE formalism, as described in the computational methods section. 
The values determined for the coefficients α, β and γ were 0.54, 0.26 and −2.65, respec-
tively, resulting in the final LIE equation: ∆𝐺ௗ = 0.54ሺ〈𝑉ି௩ௗௐ〉 − 〈𝑉ିௐ௩ௗௐ〉ሻ  + 0.26ሺ〈𝑉ି 〉 − 〈𝑉ିௐ 〉ሻ − 2.65 (2) 

Coefficient α is, therefore, parameterized to be larger than coefficient β, giving 
greater weight to the van der Waals component of the interaction energy, which in turn is 
consistent with the hydrophobicity of the active site and the compounds themselves. It 
should be noted that similar α and β coefficients have been frequently determined in LIE 
studies of various bio-macromolecular systems [53–55]. The experimentally derived and 
the calculated binding free energies for all investigated β-carbolines are listed in Table 2, 
along with the average RMSD values of the ligand for the duration of the MD simulation. 

Table 2. Calculated binding free energies of β-carbolines 1–11 compared with the available experi-
mental results (obtained from ref. [48]) and average RMSD values for each ligand (for RMSD graphs 
of all compounds along the duration of molecular dynamics simulations see Supplementary Mate-
rials, Figures S1–S11). 

Compound Structure 
𝑲𝒊 

[µM] 
∆𝑮𝒃𝒊𝒏𝒅𝒊𝒏𝒈𝒆𝒙𝒑  

[kcal mol−1] 
∆𝑮𝒃𝒊𝒏𝒅𝒊𝒏𝒈𝒄𝒂𝒍𝒄  

[kcal mol−1] 
RMSD 

[Å] 

1 3.34 ± 0.10 −7.6 ± 0.02 −7.9 ± 0.5 3.7 

2 

 

1.43 ± 0.09 −8.1 ± 0.04 −9.3 ± 0.6 1.1 

3 

 

0.26 ± 0.024 −9.1 ± 0.06 −9.1 ± 0.3 1.9 

4 

 

0.68 ± 0.026 −8.6 ± 0.02 −8.6 ± 0.6 1.5 

5 

 

0.16 ± 0.036 −9.4 ± 0.14 −9.6 ± 0.6 1.6 

6 

 

0.005 ± 0.0002 −11.5 ± 0.02 −10.0 ± 0.4 2.3 

7 

 

0.069 ± 0.008 −9.9 ± 0.07 −9.0 ± 1.2 1.7 

8 

 

0.015 ± 0.0008 −10.9 ± 0.03 −9.4 ± 0.6 1.4 
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0.048 ± 0.007 −10.2 ± 0.09 −10.6 ± 0.6 1.9 

10 

 

0.39 ± 0.052 −8.9 ± 0.08 −10.1 ± 0.4 3.7 
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1.23 ± 0.27 −8.2 ± 0.01 −8.5 ± 0.3 3.5 

The binding free energy values calculated from our MD simulations are in broad 
agreement with the available experimental data. Figure 3C further illustrates the correla-
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The binding free energy values calculated from our MD simulations are in broad
agreement with the available experimental data. Figure 3C further illustrates the correlation
between the experimentally determined and the calculated free energies of binding together
with the standard deviations. Looking at the deviations, most of the values fall on the
diagonal line, which is a perfect match between the experimental and calculated free
energies, with some inhibitors deviating to a larger extent such as compounds 2, 6, 8, and 10.

2.3. Dynamic Insight into the β-Carboline–MAO-A Molecular Recognition

The obtained MD trajectories of all ligands 1–11 in the bound state provide a consider-
able amount of structural data for further analysis to allow a more dynamic picture of the
molecular recognition between β-carbolines and the active site of the MAO-A enzyme. To
complement the binding free energy data obtained by LIE calculations, we investigated the
interaction between β-carbolines and MAO-A using dynamic pharmacophore models. The
dynamic pharmacophore (dynophore) approach allows us to combine the features of MD
simulations and static 3D structure-based pharmacophore models, as it provides us with
the statistical characterization of the pharmacophore features of the ligand throughout the
simulation. This information is then distilled into so-called “superfeatures” represented by
the clouds of a given pharmacophore model [56–58]. Furthermore, the dynamic picture of
molecular recognition was complemented by RMSD calculations to evaluate the stability of
the proposed ligand-binding pose.

Compound 1 (i.e., norharman) is the simplest of the β-carbolines studied, having no
additional methyl or methoxy groups. It is also the least potent inhibitor, as indicated
by the experimentally determined inhibition constant (Ki = 3.34 ± 0.10 µM), which is
converted to a binding free energy value of −7.6 kcal mol−1. This was well reflected in
our LIE calculations, with compound 1 having the lowest calculated binding free energy
of −7.9 ± 0.5 kcal mol−1. This observation could be related to the highest RMSD value in
the group of simulated β-carbolines, i.e., compound 1 undergoes a significant geometric
shift at about the 30 ns mark of the simulation (see Figure 4C). Before the shift, this
compound is seen in a binding pose similar to the X-ray-determined pose of β-carboline
harmine (compound 6), whereas after the shift, it occupies a different part of the active site.
It no longer interacts with the aromatic cage tyrosines (Tyr407 and Tyr444), which have
been shown to be very important for binding [59]. This pose is, therefore, not so well-suited
for MAO-A inhibition, which is clearly reflected in our results, especially in the dynophore
analysis (Figure 4A,B). The latter shows hydrophobic interactions between the aromatic
rings of inhibitor 1 and several active site amino acids (Ile180, Ile335, Leu337, Met350,
Phe352, Tyr407, and Tyr444) as well as the pyridine and pyrrole nitrogen atoms, which act
as hydrogen bond acceptor and donor, respectively. Frame-by-frame analysis clearly shows
that the interactions with both tyrosines are present in the first 30 ns of the simulation. After
the molecule moves away from the aromatic cage, new interactions appear with Leu337,
Met350, and Ile335.

β-carbolines 2–5 represent variations in compound 1 with additional methyl groups
at different positions. In all compounds, most of the interactions are hydrophobic and
originate mainly from the two aromatic rings. In compounds 2, 4, and 5, there is an
additional methyl group on the pyridine nitrogen, which makes it positively charged
and unable to act as a hydrogen bond acceptor, as is the case in compounds 1 and 3. An
additional methyl group on the C1 atom (next to the pyridine nitrogen, see Figure 1) in
compounds 3, 4, and 5 is able to form additional stabilizing hydrophobic interactions with
the active site tyrosines (Tyr197, Tyr407, andTyr444) and isoleucines (Ile180 and Ile207).
Interestingly, in compound 3, the pyrrole nitrogen can act as a hydrogen bond donor and
interact with Asn181.
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Figure 4. Overview of the interaction pattern obtained through dynophore analysis for β-carboline
compound 1. (A) Calculated percentage of the occurrence of a dynamic pharmacophore element
based on all frames divided into element-interacting amino acid pairs (for compounds 2–5, see
Supplementary Materials, Figure S12). (B) The presence of hydrophobic interactions of the pyri-
dine ring with various active site amino acid residues during the molecular dynamics simulation.
(C) RMSD of compound 1 during the molecular dynamics simulation (for compounds 2–5, see
Supplementary Materials, Figures S2–S5). (D) Distance between the pyrrole nitrogen and residue
Asn181 during the molecular dynamics simulation for compounds 1–5. The distance is shown as a
block average over 1 ns (1000 total blocks of 0.1 ns cover the entire 100 ns MD simulation).

Figure 4D shows the distance between the pyrrole nitrogen and Asn181 for compounds
1–5 during the MD simulation. For inhibitors 2 and 3, this distance is relatively stable,
with the average distance for compound 3 being slightly shorter, presumably resulting in
the interaction being reflected in the dynophore analysis. For the other three inhibitors,
the distance is less stable and for inhibitor 1, we can see a clear correlation between the
distance and the interaction pattern in the dynophore analysis. Namely, the dynophore
analysis reflects the interaction between Asn181 and the pyrrole nitrogen when the distance
is shorter than about 2.9 Å.

All four compounds in this group have relatively small RMSD values (see Table 2),
implying that their binding modes are stable throughout the MD simulation. Moreover, the
calculated LIE values for the free energy of binding of inhibitors 3–5 agree remarkably well
with the experimentally determined values for their free energies of binding.

According to experimental data, β-carboline 6 (i.e., harmine) is the strongest MAO-A
inhibitor in the series (Ki = 0.005 ± 0.0002 µM), and the binding free energy value we
calculated also places it among the strongest inhibitors (∆Gcalc = −10.0 ± 0.4). Structurally,
it is most similar to inhibitor 3, with an additional methoxy group present at the C7 atom.
Therefore, the predicted interactions (see Figure 5A) are similar to those of compound 3:
hydrophobic interactions of the two aromatic rings and the methyl group, and the pyridine
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and pyrrole nitrogen as hydrogen bond acceptor and donor, respectively. Additional
interactions are possible with the methoxy group.
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Figure 5. Overview of the interaction pattern obtained through dynophore analysis for β-carboline
harmine 6. (A) Calculated percentage of the occurrence of a dynamic pharmacophore element
based on all frames divided into element-interacting amino acids pairs (for compounds 7–9, see
Supplementary Materials, Figure S13). (B) The presence of hydrophobic interactions of the pyri-
dine ring with various active site amino acid residues during the molecular dynamics simulation.
(C) RMSD of compound 6 during the molecular dynamics simulation (for all compounds, see Supple-
mentary Materials, Figures S1–S11). (D) Distance between the pyrrole nitrogen and Asn181 during
the molecular dynamics simulation.

Dynophore analysis predicts interactions with Leu337, Ile180, Ile335, Phe208, Val210,
Tyr407, Tyr444, Phe352, Ser209, Cys323, Tyr197, Asn181, and Ile207. This covers 9 of the
12 interactions determined in the X-ray structure (compared to 6 of 12 that we determined
using static pharmacophore analysis). The RMSD for compound 6 is relatively large, and
(similar to inhibitor 1) we can see a clear shift in the molecule at about the 40 ns mark of
the simulation (Figure 5C). In contrast to compound 1, the molecule moves closer to the
aromatic tyrosine cage. Figure 5B clearly shows the appearance of interactions with Tyr407
and Tyr444 at this time point and the disappearance (or weakening) of interactions with
Leu337, Ile180, and Phe352. At the same time point, we also note an abrupt shortening of the
distance between the pyrrole nitrogen and residue Asn181 and a subsequent stabilization
of this distance (Figure 5D).

Similar to inhibitor 6, compounds 7–9 also have a methoxy group at the C7 atom,
with additional methyl groups at various positions. The dynophore analysis predicts
hydrophobic interactions of aromatic rings and the methyl group at the C1 atom, as well
as additional interactions of the methoxy oxygen atom with Cys323 and water molecules.
Analogously to compound 6, some interactions with the pyrrole or pyridine nitrogen atom
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can also be formed. The calculated RMSD values for inhibitors 7–9 are relatively small,
while the agreement between the experimentally determined free energies of binding and
their calculated counterparts is not optimal.

Finally, compounds 10 and 11 both have a methoxy group on the C6 atom instead of
the C7 atom. The dynophore analysis of both inhibitors (Figure 6A,C) again shows mainly
the presence of hydrophobic interactions with both rings and the methyl group at C1. The
prevalence of hydrophobic interactions with the pyridine ring is significantly lower for
inhibitor 10, probably due to there being one less double bond. The average calculated
RMSD value is quite high for both inhibitors (3.7 Å and 3.5 Å, respectively). Compound 10
clearly moves away from the aromatic cage at 10–20 ns of the MD simulation (Figure 6B).
On the other hand, compound 11 undergoes a larger geometric shift in the first 5 ns of the
simulation and remains relatively stable thereafter (Figure 6D). The calculated binding free
energies for compounds 10 and 11 are −10.1 and −8.5 kcal mol−1, respectively, the latter
being in better agreement with the experimentally determined values than the former.
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Figure 6. Overview of the interaction pattern obtained by dynophore analysis for compounds 10
(top) and 11 (bottom). Calculated percentage of the occurrence of a dynamic pharmacophore element
based on all frames divided into element-interacting amino acids pairs for compound 10 (A) and
compound 11 (C). Calculated RMSD value for the duration of the molecular dynamics simulation for
compound 10 (B) and compound 11 (D).

2.4. Guidelines for Further Optimization of β-Carbolines as Non-Covalent MAO-A Inhibitors

The low molecular weight of the investigated β-carboline compounds, as well as
several substitution possibilities provided by their tricyclic core scaffold, suggests that these
compounds could be further optimized to obtain even more active and pharmacokinetically
more suitable preclinical candidates targeting the MAO-A enzyme. Furthermore, these β-
carbolines can be classified as natural products which are known to be the most productive
source of lead compounds to develop new drug molecules [60,61].

Previous docking studies of MAO-A and MAO-B enzymes with β-carboline deriva-
tives have shown that the addition of lipophilic and bulky groups at C7 increases the
inhibitory potency against MAO-A more than against MAO-B enzyme [62]. This is due to
the structurally unfavorable overlap of these derivatives as well as some of the β-carbolines
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in this study substituted at the C7 position with Tyr326 residue of MAO-B, as compared to
the structurally smaller Ile335 found in the MAO-A isoform [47]. The mentioned residues
comprise one of the crucial differences between the two MAO isoforms and play an im-
portant role in determining the compound’s binding selectivity. The advantage of the
β-carbolines substituted at C7 was further substantiated by our analysis of the MAO-A
active site using molecular interaction fields (MIFs). The contours of the obtained MIF
using a hydrophobic probe identified an empty lipophilic pocket and the possibility of
hydrophobic interactions with residues Ile180, Phe208, Ile325, and Ile335. The other amino
acid residues identified by our Apo Site Grid analysis (see Figure 7A) as capable of forming
hydrophobic interactions were Tyr69, Ile207, Leu337, Met350, Phe352, and the aromatic cage
tyrosines Tyr407 and Tyr444. For all these residues, our pharmacophore and dynophore
analysis also revealed favorable hydrophobic interactions.
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Figure 7. (A) Calculated molecular interaction fields in the MAO-A active site using different
molecular probes. Regions of the active site with amino acids capable of acting as hydrogen
bond donors (green), acceptors (red) or forming hydrophobic interactions (yellow). (B) General
β-carboline structure with proposed possibilities for rational structure-based optimization of MAO-A
inhibitory activity.

In addition, MIFs further revealed some MAO-A active site residues as favorable to
form hydrogen bonds, namely Asn181, Gln215, Ser209, and Thr336—all of which, except
for the latter, we also found to form interactions with the pyrrole or pyridine nitrogen using
the dynophore analysis. However, since the active site is predominantly hydrophobic,
hydrogen bonding is possible mainly with the water molecules present in the MAO-A
binding cavity (for the average number of water molecules present in the binding site cavity
during the MD simulations, see Supplementary Materials, Table S12). Based on all the
collected data from the Apo Site Grid analysis as well as the previous structure and energy
data from the MD simulations, we present some basic ideas for optimizing the β-carboline
structure to fully utilize all the possible interactions within the MAO-A active site (see
Figure 7B). The main possible points of optimization are carbon atoms C1 and C7, where the
alkyl chain could potentially be extended to allow for more hydrophobic interactions with
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the active site. The C6 atom should be left unsubstituted, since the addition of functional
groups on this atom does not contribute positively to the MAO-A inhibitory activity.

3. Discussion

With this computational study, we aimed to provide additional insight into MAO-A
molecular recognition by examining the binding modes of a series of substituted β-carboline
natural products. MAOs are enzymes with a variety of important functions in the central
nervous system, so the development of drugs targeting these enzymes could be useful
for several therapeutic applications. For instance, they show potential for development of
novel drugs for treatment of neurodegeneration, while drugs targeting the MAO-A isoform
are particularly useful in the treatment of mental disorders such as depression.

After docking a set of 11 β-carbolines into the MAO-A active site, the derived structure-
based pharmacophores revealed key interactions with most of the amino acids identified as
important in the X-ray-determined binding model of harmine 6, with an emphasis on the
occurrence of hydrophobic interactions with the active site. There were minor differences
in the binding modes of the neutral β-carbolines compared to their charged counterparts,
with the charged β-carbolines exhibiting fewer interactions. While docking is invaluable for
evaluating the geometric aspects of β-carboline binding, it is less adequate for predicting
binding energies. Thus, we used the linear interaction energy (LIE) approach and generated
MD simulations for all inhibitors as well as explored the molecular recognition feature
with dynamic pharmacophores (i.e., dynophores). Similar to the obtained pharmacophores,
the generated dynophores predicted mainly hydrophobic interactions with the active site
residues along with some hydrogen bonding of the pyrrole and pyridine nitrogen with the
water molecules present in the active site and with some amino acid residues. In addition,
during the performed MD simulations, we also examined the positional changes in the
MAO-A active site residues compared to their original positions in the X-ray structure. We
found that no significant shifts in the most important residues (e.g., Tyr69, Ile180, Phe208,
Leu337, Phe352, Tyr407, and Tyr444) occurred, suggesting that no substantial reorganization
of the MAO-A active site is required for the non-covalent binding of β-carbolines.

Decomposition of the interaction energy into electrostatic and van der Waals contri-
butions within the LIE formalism showed that van der Waals interactions appear to be
the predominant driving force for β-carboline binding, consistent with the observed high
hydrophobicity of the MAO-A binding site. The empirical LIE coefficients α, β, and γ were
determined to be 0.54, 0.26, and −2.65, respectively, and the calculated free energies of
binding were in good agreement with the experimentally determined values.

Dynamic pharmacophore analysis confirms that the relative orientation of the β-
carbolines is important for their ability to form interactions with the targeted active site.
Most importantly, stabilizing interactions with the tyrosines of the so-called aromatic cage
(Tyr407 and Tyr444) are possible only when the β-carboline is in a parallel position such as
the conformation obtained by X-ray crystallography. Other sites that appear to be important
for the formation of interactions are the C1 atom, where the methyl group at this position
can form hydrophobic interactions, and the C7 atom, where the methoxy group at this
position forms additional hydrogen bonds with active site water molecules and various
amino acid residues such as Ser209 and Cys323.

The results presented in this study thus provide a static and dynamic atomistic picture
of molecular recognition occurring between substituted β-carbolines and MAO-A. Fur-
thermore, the data obtained can serve as guidelines in further rational optimization and
development of β-carbolines towards active compounds that would potentially be useful
as MAO-A-specific inhibitors with therapeutic application in the treatment of depression.

4. Materials and Methods
4.1. Molecular Docking and Binding Site Analysis

Molecular docking studies were performed using the available co-crystal structure of
the β-carboline harmine (compound 6) with the MAO-A enzyme isoform (PDB code 2Z5X)
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and the GOLD (v. 5.3.0) docking program [49]. The binding site included all atoms within a
radius of 20 Å around the center, which was fixed to the N5 atom of the FAD moiety. Prior
to docking, all water molecules were removed except for seven water molecules occupying
the binding cavity, which were identified as important for the binding modes and were
therefore retained, and all were used in the docking procedure [47]. The ligand obtained
from the crystal structure (harmine, i.e., compound 6) was set as the reference ligand for
the docking procedure and the conformations of the remaining ligands were generated
as described in the next subsection. Standard protonation states of amino acid residues at
neutral pH were determined. A set of 25 algorithm runs were performed for each ligand. To
achieve optimal accuracy in the docking process, the following genetic algorithm settings
were used: population size 100, selection pressure 1.1, number of operations 100,000,
5 islands, and niche size 2. The scoring functions used to evaluate the ligand positions
obtained from the docking studies were GoldScore, ChemScore and ChemPLP. Docking
results were visualized in LigandScout [50], which was also used to determine the 3D
structure-based pharmacophores of the binding modes considered.

LigandScout was also used for the Apo Site Grid analysis with the default settings
used. During this task, molecular probes, such as hydrogen bond acceptor, hydrogen bond
donor, positive ionizable, negative ionizable, hydrophobic probes, and others, scanned the
β-carboline binding site of the MAO-A enzyme, deriving contours of the corresponding
molecular interaction fields (MIFs).

4.2. Preparation of the Initial Structures for Molecular Dynamics Simulations

Our MD studies were also all based on the experimentally solved crystal structure of
the MAO-A enzyme with the bound reversible inhibitor harmine (compound 6) obtained
from the Protein Data Bank (PDB code 2Z5X). The studied structures of β-carbolines 1–11
were prepared manually by modifying the experimentally determined compound 6 with
PyMOL [63]. To obtain structures 9–11, the corresponding pyridine bond had to be hydro-
genated, resulting in a partially unsaturated ring. Molecules 2, 4, 7, and 11 were modified
by methylation of the pyridine ring nitrogen and molecules 5 and 8 by additional methyla-
tion of the pyrrole ring nitrogen resulting in six charged β-carbolines. The methoxy group
of compound 6 had to be removed to give compounds 1–5. In addition, deletion of the
methyl group yielded compound 1.

Before starting the MD simulations, the force field parameters had to be developed
for all the compounds we studied. The simulations were performed using the OPLS-AA
force field [64]. After all the compounds were extracted from their initial complexes, they
were fully optimized at the Hartree-Fock (HF) level of theory using the 6–31G(d) basis set
encoded in the Gaussian16 program package [65]. For all compounds, atomic charges were
determined by fitting to the HF/6–31G(d) calculated electrostatic potential according to the
RESP scheme as implemented in AmberTools18 [66]. Parameters were determined using
the ffld_server utility assisted by the Maestro v. 11.7 graphical interface [67]. The MAO-A
enzyme was parametrized following the procedure described in our previous work [68].
Parameters and atom types for all simulated ligands 1–11 are available in the Supporting
Information (see Supplementary Materials, Tables S1–S11).

All crystal waters were removed from the original protein complex and a spherical
cell of TIP3P waters with a radius of 30 Å centered on the crystal coordinates of the central
N5 atom was constructed. Similarly, for the free-state simulations, a spherical cell of TIP3P
waters with the same radius of 30 Å centered on the N5 atom of the ligands was prepared.
For the positively charged ligands, a chloride ion was included in both the bound and
free-state simulations to ensure electroneutrality. All topology and coordinate files needed
to initiate the MD simulations were created using the qprep5 utility of the MD package Q v.
5.06 [69].
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4.3. Molecular Dynamics Simulations

The calculation of binding free energies for our compounds was facilitated by generat-
ing MD trajectories of the studied compounds in the bound and free states using the qdyn5
utility of the MD package Q v. 5.06 [69].

In the free state, a position constraint of 100 kcal mol−1 Å−2 was imposed on the
central nitrogen atom of all studied compounds to prevent diffusion of the compound to
the edge of the simulation sphere. In addition, a flat-bottom harmonic potential of 75 kcal
mol−1 Å−2 was placed on the chloride ion for the charged compounds in both states and
set to zero for distances less than 26.5 Å from the center of the simulation sphere.

Protein atoms beyond the 30 Å spherical cell were restrained to their original crystal
structure coordinates using harmonic constraints. Non-bonding interactions of these atoms
were turned off. The local reaction field (LRF) method was used to evaluate long-range
electrostatics for distances beyond the 10 Å cut-off. For distances below 10 Å, the non-
bonding interactions were explicitly evaluated.

All systems were first relaxed in 14 separate steps, by slowly increasing the tempera-
ture and the step size. Initially, two separate simulations were performed with 30,000 and
20,000 steps at 5 K and a step size of 0.005 fs and 0.01 fs, respectively. For the bound
state, all protein and ligand atoms were constrained to their original coordinates, allowing
only the movement of water molecules. Then, the system was further relaxed in four
additional stages of 20,000 steps and one of 50,000 steps, all at 5 K, with step sizes of 0.01 fs,
0.04 fs, 0.1 fs, 0.3 fs, and 1.0 fs, respectively. Then, the system was heated in five stages
of 40,000 steps with a step size of 1.0 fs in 50 K increments starting at 50 K and ending at
250 K. Finally, two simulations of 10,0000 steps were performed at 298 K, with a step size of
1.0 and 2.0 fs, respectively. Data for the calculation of binding free energies were collected
from 10 consecutive simulations with 5,000,000 steps and a step size of 2.0 fs at 298 K (NVT
canonical ensemble), giving a total of 0.1 µs MD simulation time for each investigated
compound in both the free and bound states.

Visualization and analysis of the generated MD trajectories were facilitated by the
VMD program package [70]. RMSD analysis was performed for the entire trajectory, and
the calculated RMSD values were calculated referring to the initial structure of the protein
and ligand, respectively. All calculations were performed using the computational facilities
of the Ažman High-Performance Computing Center of the National Institute of Chemistry.

4.4. Generation of Dynamical Pharmacophore Models

To obtain a more detailed description of our system in terms of dynamic pharma-
cophore (dynophore) models, 1000 exported MD equidistant frames were used in dynamic
pharmacophore analysis with the DynophoreApp developed at the Molecular Design Lab
of Freie Universität (FU) Berlin [58]. These dynophore calculations were performed on
computers at the Molecular Design Lab, Berlin, Germany, and subsequently visualized in
LigandScout [50].

4.5. Calculation of Binding Free Energies Using the Linear Interaction Energy Method

The linear interaction energy (LIE) method [63,71] was developed by Åqvist to fa-
cilitate the calculation of binding free energies of ligands that bind to their target in a
non-covalent way (Gbind). We have successfully used it in our previous study, where we
calculated the binding free energies of N-sulphonyl-glutamic acid inhibitors of MurD
ligase [72]. LIE is based on a modified linear response approximation for electrostatic
interactions and on an empirical term treating the non-polar interactions. The main ad-
vantage of LIE compared to other methods that can be used for the same purpose (e.g.,
free energy perturbation and thermodynamic integration) is that we only need to perform
two MD simulations—one in the free state (i.e., solvated, in water) and one in the bound
state (i.e., solvated protein). This means that the sampling of any intermediate states is not
necessary which consequently drastically reduces the associated computational costs. A
thermodynamic cycle can be drawn as outlined in Figure 8, where the top row represents
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the two physical states mentioned above and the bottom row represents two unphysical
intermediate states.
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An equation can be derived because the free energy is a state function and, therefore,
the sum of the changes in the thermodynamic cycle must be zero:

∆Gbinding + ∆GP
decoupling − ∆GW

decoupling − ∆Gdecoupled
binding = 0. (3)

Since, for a decoupled ligand, all non-bonding interactions are switched off, the
∆Gdecoupled

binding term is zero, and the equation can be rearranged as:

∆Gbinding = ∆GW
decoupling − ∆GP

decoupling. (4)

The two terms on the right-hand side of the equation essentially represent the differ-
ence in free energy for the transfer of the ligand from its environment (W represents water
or the free state, while P represents the protein or the bound state) to the gas phase. In the
context of LIE, these can be written as:

∆GQ
solvation = −∆GQ

decoupling = αVvdW
L−Q + βVel

L−Q + γ, (5)

where the 〈 〉 brackets denote the MD mean values of the non-bonded van der Waals (vdW)
and electrostatic (el) interactions between the ligand L and its environment Q (i.e., either
the solvated protein binding site P or the aqueous solution W). Consequently, the final LIE
equation has the following form:

∆Gbinding = α
(〈

VvdW
L−P

〉
−
〈

VvdW
L−W

〉)
+ β

(〈
Vel

L−P

〉
−
〈

Vel
L−W

〉)
+ γ. (6)
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The empirical parameters of this equation are the coefficients α and β for the nonpolar
and polar binding energy contributions, respectively, and an additional (optional) constant
γ, which is used mainly when we are dealing with very hydrophobic active sites [73]. In
our study, we determined the empirical coefficients α, β, and γ for our system using the
linear approximation method based on the van der Waals and electrostatic energy averages
in the bound and free states during the MD simulation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196711/s1, Tables S1–S11: Parameters and atom types
for compounds 1–11; Figures S1–S11: RMSD graphs for compounds 1–11; Figure S12: Overview of the
interaction pattern obtained with dynophore analysis for compounds 2–5; Figure S13: Overview of
the interaction pattern obtained with dynophore analysis for compounds 7–9; Figure S14: Comparison
between X-ray binding pose of harmine with the determined binding modes; Table S12: The average
number of water molecules present in the MAO-A active site during the simulation.
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