Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Dextran Containing Rhodamine B (Dextran-RhB)
2.3. Synthesis of Bromine-Substituted Dextran Containing Rhodamine B (Br-Dextran-RhB)
2.4. Synthesis of Dextran Fluorescent Compounds (SD-Dextran-RhB)
2.5. Cell Cytotoxicity Test
2.6. Cell Uptake Assay
2.7. Fluorescent Imaging Assay
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Fluorescence and UV Spectra
3.3. Cell Cytotoxicity
3.4. Cell Uptake Assay
3.5. Fluorescent Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, C.J.; Lewis, J.S. Current status and future challenges for molecular imaging. Phil. Trans. R. Soc. A 2017, 375, 20170023. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xu, A.; Yu, Y.; Fu, C.; Liang, G. Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probes. ChemBioChem 2019, 20, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Sun, L.; Yan, Q.; Qiu, X.Y.; Cheng, Y.T.; Wang, B.L.; Tan, X.P.; Fang, M.X.; Luck, R.L.; Liu, H.Y. Near-infrared fluorescent probe based on cyanine scaffold for sensitive detection of uranyl ions in living cells and water samples. Microchem. J. 2022, 180, 107619. [Google Scholar] [CrossRef]
- He, S.; Song, J.; Qu, J.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278. [Google Scholar] [CrossRef]
- Huang, X.; Song, J.; Yung, B.C.; Huang, X.; Xiong, Y.; Chen, X. Ratiometric optical nanoprobes e;nable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Teoh, C.L.; Wang, L.; Liu, X.; Chang, Y.T. Motion-induced change in emission (MICE) for developing fluorescent probes. Chem. Soc. Rev. 2017, 46, 4833–4844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhao, H.; Jiao, Y.; Zhu, Y.; Liu, C.; Li, F.; Wang, Y.; Gu, Z.; Yang, D. Biosynthetic molecular imaging probe for tumor-targeted dual-modal fluorescence/magnetic resonance imaging. Biomaterials 2020, 152, 120220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hong, H.; Tao, T.; Jie, L.; Li, Y. Rational design of nanoparticles with deep tumor penetration for effective treatment of tumor metastasis. Adv. Funct. Mater. 2018, 40, 1801840. [Google Scholar] [CrossRef]
- Liang, S.C.; Liu, Y.M.; Fu, T.; Yang, F.; Chen, X.H.; Yan, G.P. A water-soluble and biocompatible polymeric nanolabel based on naphthalimide grafted poly(acrylic acid) for the two-photonfluorescence imaging of living cells and C. elegans. Colloids Sur. B Biointerfaces 2016, 148, 293–298. [Google Scholar] [CrossRef]
- Liang, S.C.; Tong, Q.; Qin, X.N.; Liao, X.Y.; Li, Q.; Yan, G.P. A hydrophilic naphthalimide-based fluorescence chemosensor for Cu2+ ion: Sensing properties, cell imaging and molecular logic behavior. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118029. [Google Scholar] [CrossRef]
- Li, H.; Parigi, G.; Luchinat, C.; Meade, T.J. Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging. J. Am. Chem. Soc. 2019, 141, 6224–6233. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.Y.; Liang, S.C.; Liu, Y.P.; Zhang, J.Y.; Yan, G.P. Preparation, characteristics and cell imaging of fluorescent nanoparticles based on grafted poly(acrylic acid). Chin. J. Anal. Chem. 2017, 45, 747–753. [Google Scholar]
- Zhao, J.; Jin, G.; Weng, G.; Li, J.; Zhu, J.; Zhao, J. Recent advances in activatable fluorescence imaging probes for tumor imaging. Drug Discov. Today 2017, 22, 1367–1374. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Zhao, T.; Li, Y.; Huang, G.; Sumer, B.D.; Gao, J. Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials 2018, 157, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, Z. Targeting peptide-based probes for molecular imaging and diagnosis. Adv. Mater. 2019, 31, 1804827. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Sun, C.; He, Y.; Xia, T.; Wang, J.; Xiong, X.; Zhang, Q.; Yang, S.; Liu, L. ZWZ-3, a fluorescent probe targeting mitochondria for melanoma imaging and therapy. Front. Pharmacol. 2022, 13, 829684. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.C.; Chen, S.; Zhang, Q.; Guo, Q.Z.; Yan, G.P.; Zhang, Q.; Guo, Q.Z.; Gu, Y.T. Tumor-targeting fluorescent probe based on 1,8-naphthalimide and porphyrin groups. Chemistryselect 2020, 5, 7680–7684. [Google Scholar] [CrossRef]
- Zheng, S.Y.; Tang, W.Q.; Zhang, M.; Yan, J.R.; Liu, F.; Yan, G.P.; Liang, S.C.; Wang, Y.F. Dual-modal polypeptide-containing contrast agents for magnetic resonance/fluorescence imaging. Bioorganic Chem. 2022, 129, 106127. [Google Scholar] [CrossRef]
- Liu, F.; Yan, J.R.; Chen, S.; Yan, G.P.; Pan, B.Q.; Zhang, Q.; Wang, Y.F.; Gu, Y.T. Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 2020, 212, 120718. [Google Scholar] [CrossRef]
- Ouyang, Y.H.; Xu, W.; Zhou, C.K.; Liu, F.; Li, B.; Yan, G.P.; Yang, L.; Chen, S.; Jiang, C. Porphyrin-containing gadolinium complex as a tumor-targeting magnetic resonance imaging (MRI) contrast agent. Curr. Drug Deliv. 2018, 15, 972–978. [Google Scholar] [CrossRef]
- Liu, F.; Zou, T.J.; Tan, Z.L.; Chen, S.; Wu, Z.H.; Yan, G.P.; Zhang, Q.; Liang, S.C.; Yang, J. Isoindoline nitroxide-labeled porphyrins as potential fluorescence-suppressed spin probes. Org. Biomol. Chem. 2017, 15, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zou, T.J.; Tan, Z.L.; Yan, G.P.; Guo, J.F.; Zhang, Q.; Liu, H.; Yang, J. Fullerenol spin probe containing isoindoline nitroxide and porphyrin groups. Fuller. Nanotub. Car. N 2016, 24, 500–506. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.C.; Ouyang, Y.H.; Yan, G.P.; Chen, S.; Liu, H.; Wu, Y.G.; Wu, J.Y. Synthesis and properties of isoindoline nitroxides-containing porphyrins. J. Heterocycl. Chem. 2017, 54, 3143–3151. [Google Scholar] [CrossRef]
- Wang, J.; Dong, R.; Wu, H.; Cai, Y.; Ren, B. A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 2020, 12, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.Y.; Lin, L.P.; Chen, X.H.; Liu, F.; Zhu, X.B.; Yan, G.P. Preparation and properties of fluorescent quantum dots microbeads encapsulated in-situ by polyisobornyl methacrylate for immunoch romatography. J. Nanophoton. 2021, 15, 016008. [Google Scholar] [CrossRef]
- Yu, X.Q.; Yu, K.K.; Li, K.; Lu, C.Y.; Bao, J. Multifunctional gold nanoparticles as smart nanovehicles with enhanced tumour-targeting abilities for intracellular pH mapping and in vivo MR/fluorescence imaging. Nanoscale 2020, 12, 2002–2010. [Google Scholar] [CrossRef]
- Gwang, J.N.; Hongsuk, P.; Eun, S.L. Augmented tumor accumulation and photothermal ablation using gold nanoparticles with a particular cellular entry orientation. J. Bioact. Compat. Polym. 2018, 33, 660–675. [Google Scholar]
- Zhang, M.; Liu, F.; Ke, X.J.; Chen, S.; Yan, G.P.; Zhang, Q.; Liang, S.C.; Wang, Y.F.; Jiang, C. Polyaspartamide fluorescent probe containing rhodamine B and Sulfadiazine groups. Chin. J. Org. Chem. 2020, 40, 938–943. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Shen, Y.C.; Liu, F.; Chen, S.; Yan, G.P.; Liang, S.C.; Zhang, Y.F.; Wu, Y.G. Dual-modal fullerenol probe containing glypican-3 monoclonal antibody for electron paramagnetic resonance/fluorescence imaging. Fuller. Nanotub. Car. N 2021, 29, 280–287. [Google Scholar] [CrossRef]
- Zhang, Y.; García-Gabilondo, M.; Grayston, A.; Feiner, I.V.; Anton-Sales, I.; Loiola, R.A.; Llop, J.; Ramos-Cabrer, P.; Barba, I.; Garcia-Dorado, D.; et al. PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. Nanoscale 2020, 12, 4988–5002. [Google Scholar] [CrossRef] [Green Version]
- Du, H.J.; Shen, Y.C.; Liu, Y.P.; Han, L.; Zheng, Y.; Yan, G.P.; Tu, Y.Y.; Wu, J.Y.; Guo, Q.Z.; Zhang, Y.F.; et al. Dextran gadolinium complex containing folate groups as a potential magnetic resonance imaging contrast agent. Chin. J. Polym. Sci. 2015, 33, 1325–1333. [Google Scholar] [CrossRef]
- Yan, G.P.; Xu, W.; Yang, L.; Li, L.; Liu, F.; Guo, Q.Z. Dextran gadolinium complexes as contrast agents for magnetic resonance imaging to sentinel lymph nodes. Pharm. Res. 2010, 27, 1884–1892. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Han, L.; Yan, G.P.; Tu, Y.Y.; Yuan, H.; Zou, T.J.; Shao, C.T.; Liu, H.F. Studies on dextran gadolinium complex containing Sulfadiazine groups. Acta. Polym. Sin. 2014, 2, 263–269. [Google Scholar]
- Huang, J.L.; Wang, H.Y.; Zhou, C.L. Ring-opening polymerization of ethylene oxide by anion initiation using sulfadiazine as parents compound. J. Appl. Polym. Sci. 1995, 58, 8–11. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, B.; Xia, X.T.; Yan, J.R.; Yu, F.Q.; Yan, G.P.; Hu, J.; Chen, S.; Wang, Y.F.; Liu, H.; et al. Al18F labeled sulfonamide-conjugated PET tracer in vivo tumor-targeted imaging. J. Cell Biochem. 2019, 120, 17006–17014. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.P.; Zong, R.F.; Li, L.; Fu, T.; Liu, F.; Yu, X.H. Nano anticancer drug loaded nanospheres based on biodegradable amphiphilic ε-caprolactone and carbonate copolymers. Pharm. Res. 2010, 27, 2743–2754. [Google Scholar] [CrossRef]
- Pal, R.R.; Kim, M.S.; Lee, D.S. Synthesis and pH-dependent micellization of sulfonamide-modified diblock copolymer. Macromol. Res. 2005, 13, 467–476. [Google Scholar] [CrossRef]
- Yan, G.P.; Liu, M.L.; Li, L.Y. Studies on polyaspartamide gadolinium complexes containing sulfadiazine groups as MRI contrast agents. Bioconjugate Chem. 2005, 16, 967–971. [Google Scholar] [CrossRef]
- Shi, F.Q. How to copy the disease model of animals. In Medical Animal Experiment Method; People’s Medical Publishing House: Beijing, China, 1990; Chapter 4; pp. 226–232. [Google Scholar]
- Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P.L. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 2009, 15, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J.Y. A new trend in rhodamine-based chemosensors: Application of spirolactarn ring-opening to sensing ions. Chem. Soc. Rev. 2008, 37, 1465–1472. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bie, B.-J.; Zhao, X.-R.; Yan, J.-R.; Ke, X.-J.; Liu, F.; Yan, G.-P. Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups. Molecules 2022, 27, 6747. https://doi.org/10.3390/molecules27196747
Bie B-J, Zhao X-R, Yan J-R, Ke X-J, Liu F, Yan G-P. Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups. Molecules. 2022; 27(19):6747. https://doi.org/10.3390/molecules27196747
Chicago/Turabian StyleBie, Bi-Jie, Xiao-Rui Zhao, Jia-Rui Yan, Xi-Jun Ke, Fan Liu, and Guo-Ping Yan. 2022. "Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups" Molecules 27, no. 19: 6747. https://doi.org/10.3390/molecules27196747
APA StyleBie, B. -J., Zhao, X. -R., Yan, J. -R., Ke, X. -J., Liu, F., & Yan, G. -P. (2022). Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups. Molecules, 27(19), 6747. https://doi.org/10.3390/molecules27196747