A Density Functional Theory and Microkinetic Study of Acetylene Partial Oxidation on the Perfect and Defective Cu2O (111) Surface Models
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Perfect and Defective Cu2O (111) Surface Models and C2H2 Adsorption
3.2. Decomposition of C2H2 on the Perfect and the Defective Cu2O (111) Surface Models
3.3. H-Abstraction Reactions of Chemisorbed C2H2 by O2 on the Cu2O (111) Surface Models
3.4. H-Abstraction and H-Addition of Chemisorbed C2H2 by Atomic H
3.5. A Comparison of H-Abstraction Reactions of Chemisorbed C2H2 by Different Radicals
3.6. Temperature Dependence of Elementary Reaction Rate Constants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; RSC Publishing: Cambridge, UK, 2013. [Google Scholar]
- Frenklach, M.; Wang, H. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 1991, 23, 1559–1566. [Google Scholar] [CrossRef]
- Tan, Y.; Dagaut, P.; Cathonnet, M.; Boettner, J.C. Acetylene oxidation in a jsr from 1 to 10 atm and comprehensive kinetic modeling. Combust. Sci. Technol. 1994, 102, 21–55. [Google Scholar] [CrossRef]
- Bond, G.C. Catalysis by Metals; Academic Press: Cambridge, MA, USA, 1962. [Google Scholar]
- Hidaka, Y.; Hattori, K.; Okuno, T.; Inami, K.; Abe, T.; Koike, T. Shock-tube and modeling study of acetylene pyrolysis and oxidation. Combust. Flame 1996, 107, 401–417. [Google Scholar] [CrossRef]
- Saggese, C.; Sánchez, N.E.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Alzueta, M.U.; Ranzi, E. Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis. Energy Fuel. 2014, 28, 1489–1501. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Liu, Y.-X.; Weng, J.-J.; Glarborg, P.; Tian, Z.-Y. New insights in the low-temperature oxidation of acetylene. Proc. Combust. Inst. 2017, 36, 355–363. [Google Scholar] [CrossRef]
- Pan, G.-F.; Fan, S.-B.; Liang, J.; Liu, Y.-X.; Tian, Z.-Y. CVD synthesis of Cu2O films for catalytic application. RSC Adv. 2015, 5, 42477–42481. [Google Scholar] [CrossRef]
- Yang, B.-X.; Ye, L.-P.; Gu, H.-J.; Huang, J.-H.; Li, H.-Y.; Luo, Y. A density functional theory study of CO oxidation on CuO1-x(111). J. Mol. Model. 2015, 21, 195. [Google Scholar] [CrossRef]
- Sun, S.J.; Zhang, D.S.; Li, C.Y.; Wang, Y.J. DFT study on the adsorption and dissociation of H2S on CuO (111) surface. RSC Adv. 2015, 5, 21806–21811. [Google Scholar] [CrossRef]
- Maimaiti, Y.; Nolan, M.; Elliott, S.D. Reduction mechanisms of the CuO (111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys. Chem. Chem. Phys. 2014, 16, 3036–3046. [Google Scholar] [CrossRef] [Green Version]
- Bendavid, L.I.; Carter, E.A. CO2 Adsorption on Cu2O (111): A DFT+U and DFT-D Study. J. Phys. Chem. C 2013, 117, 26048–26059. [Google Scholar] [CrossRef]
- Casarin, M.; Maccato, C.; Vigato, N.; Vittadini, A. A theoretical study of the H2O and H2S chemisorption on Cu2O (111). Appl. Surf. Sci. 1999, 142, 164–168. [Google Scholar] [CrossRef]
- Bredow, T.; Pacchioni, G. Comparative periodic and cluster ab initio study on Cu2O (111)/CO. Surf. Sci. 1997, 373, 21–32. [Google Scholar] [CrossRef]
- Zhang, R.; Li, J.; Wang, B.; Ling, L. Fundamental studies about the interaction of water with perfect, oxygen-vacancy and pre-covered oxygen Cu2O (111) surfaces: Thermochemistry, barrier, product. Appl. Surf. Sci. 2013, 279, 260–271. [Google Scholar] [CrossRef]
- Shen, Y.; Tian, F.H.; Chen, S.; Ma, Z.; Zhao, L.; Jia, X. Density functional theory study on the mechanism of CO sensing on Cu2O (111) surface: Influence of the pre-adsorbed oxygen atom. Appl. Surf. Sci. 2014, 288, 452–457. [Google Scholar] [CrossRef]
- Sun, B.-Z.; Xu, X.-L.; Chen, W.-K.; Dong, L.-H. Theoretical insights into the reaction mechanisms of NO oxidation catalyzed by Cu2O (111). Appl. Surf. Sci. 2014, 316, 416–423. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Tian, X.; Wang, S.; Feng, G. Density functional theory calculations on oxygen adsorption on the Cu2O surfaces. Appl. Surf. Sci. 2015, 324, 53–60. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Wang, S.; Feng, G. A first principle study on the magnetic properties of Cu2O surfaces. Curr. Appl. Phys. 2015, 15, 1303–1311. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Wang, S.; Feng, G. A computational study on water adsorption on Cu2O (111) surfaces: The effects of coverage and oxygen defect. Appl. Surf. Sci. 2015, 343, 33–40. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Q.; Yang, C.; Lin, H.; Nie, M.; Qin, L.; Li, Y. Controllable green synthesis of Cu2O nanocrystals with shape evolution from octahedra to truncated octahedra. RSC Adv. 2015, 5, 59349–59353. [Google Scholar] [CrossRef]
- Chen, S.; Cao, T.; Gao, Y.; Li, D.; Xiong, F.; Huang, W. Probing Surface Structures of CeO2, TiO2, and Cu2O Nanocrystals with CO and CO2 Chemisorption. J. Phys. Chem. C 2016, 120, 21472–21485. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Zhang, R.; Li, L.; Frazer, L.; Chang, K.B.; Poeppelmeier, K.R.; Chan, M.K.Y.; Guest, J.R. Atomistic determination of the surface structure of Cu2O (111): Experiment and theory. Phys. Chem. Chem. Phys. 2018, 20, 27456–27463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, H.; Yu, Z.; Song, R.; Qian, K.; Chen, X.; Tian, J.; Zhang, W.; Huang, W. Site-Resolved Cu2O Catalysis in the Oxidation of CO. Angew. Chem. Int. Ed. 2019, 58, 4276–4280. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-N.; Tian, Z.-Y.; El Kasmi, A.; Arshad, M.F.; Qin, W. Mechanistic study of the CO oxidation reaction on the CuO (111) surface during chemical looping combustion. Proc. Combust. Inst. 2021, 38, 5289–5297. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Zhao, B.; He, L.; Wang, A.; Wang, B. Insight into the Effects of Cu Component and the Promoter on the Selectivity and Activity for Efficient Removal of Acetylene from Ethylene on Cu-Based Catalyst. J. Phys. Chem. C 2017, 121, 27936–27949. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Jiang, Z.; Wang, B.; Fan, M. The cost-effective Cu-based catalysts for the efficient removal of acetylene from ethylene: The effects of Cu valence state, surface structure and surface alloying on the selectivity and activity. Chem. Eng. J. 2018, 351, 732–746. [Google Scholar] [CrossRef]
- Wu, L.-N.; Tian, Z.-Y.; Qin, W. Mechanism of CO Oxidation on Cu2O (111) Surface: A DFT and Microkinetic Study. Int. J. Chem. Kinet. 2018, 50, 507–514. [Google Scholar] [CrossRef]
- Padama, A.A.B.; Kishi, H.; Arevalo, R.L.; Moreno, J.L.V.; Kasai, H.; Taniguchi, M.; Uenishi, M.; Tanaka, H.; Nishihata, Y. NO dissociation on Cu(111) and Cu2O (111) surfaces: A density functional theory based study. J Phys. Condens. Mat 2012, 24, 6. [Google Scholar] [CrossRef]
- Sun, B.; Chen, W.; Wang, X.; Lu, C. A density functional theory study on the adsorption and dissociation of N2O on Cu2O (1 1 1) surface. Appl. Surf. Sci. 2007, 253, 7501–7505. [Google Scholar] [CrossRef]
- Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. Phys. Rev. B 2007, 75, 125420. [Google Scholar] [CrossRef] [Green Version]
- Önsten, A.; Weissenrieder, J.; Stoltz, D.; Yu, S.; Gothelid, M.; Karlsson, U.O. Role of Defects in Surface Chemistry on Cu2O (111). J. Phys. Chem. C 2013, 117, 19357–19364. [Google Scholar] [CrossRef]
- Wu, L.-N.; Tian, Z.-Y.; Qin, W. DFT Study on CO Catalytic Oxidation Mechanism on the Defective Cu2O (111) Surface. J. Phys. Chem. C 2018, 122, 16733–16740. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piskorz, W.; Zasada, F.; Stelmachowski, P.; Diwald, O.; Kotarba, A.; Sojka, Z. Computational and Experimental Investigations into N2O Decomposition over MgO Nanocrystals from Thorough Molecular Mechanism to ab initio Microkinetics. J. Phys. Chem. C 2011, 115, 22451–22460. [Google Scholar] [CrossRef]
- Vineyard, G.H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 1957, 3, 121–127. [Google Scholar] [CrossRef]
- Farberow, C.A.; Dumesic, J.A.; Mavrikakis, M. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111). ACS Catal. 2014, 4, 3307–3319. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Diawara, B.; Maurice, V.; Marcus, P. Bulk and surface properties of Cu2O: A first-principles investigation. J. Mol. Struct. THEOCHEM 2009, 903, 41–48. [Google Scholar] [CrossRef]
- Schulz, K.H.; Cox, D.F. Photoemission and low-energy-electron-diffraction study of clean and oxygen-dosed Cu2O (111) and (100) surfaces. Phys. Rev. B 1991, 43, 1610–1621. [Google Scholar] [CrossRef] [Green Version]
- Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Phys. Rev. B 2006, 73, 165424. [Google Scholar] [CrossRef]
No. | Elementary Reactions | A | n | E |
---|---|---|---|---|
R1 | C2H2 chemisorption on the perfect Cu2O (111) surface | 5.11 × 1013 | −0.687 | 15.117 |
R2 | C2H2 decomposition on the perfect Cu2O (111) surface | 1.15 × 1010 | 0.906 | 40.193 |
R3 | C2H2 H-abstraction on the perfect Cu2O (111) surface by O2 | 3.16 × 1010 | 0.689 | 29.443 |
R4 | C2H2 chemisorption on the defective Cu2O (111) surface | 1.98 × 1011 | −0.021 | 18.130 |
R5 | C2H2 decomposition on the defective Cu2O (111) surface | 5.13 × 107 | 1.656 | 51.245 |
R6 | C2H2 H-abstraction on the defective Cu2O (111) surface by O2 | 8.15 × 1012 | 0.588 | 18.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.-N.; Tian, Z.-Y.; Qin, W. A Density Functional Theory and Microkinetic Study of Acetylene Partial Oxidation on the Perfect and Defective Cu2O (111) Surface Models. Molecules 2022, 27, 6748. https://doi.org/10.3390/molecules27196748
Wu L-N, Tian Z-Y, Qin W. A Density Functional Theory and Microkinetic Study of Acetylene Partial Oxidation on the Perfect and Defective Cu2O (111) Surface Models. Molecules. 2022; 27(19):6748. https://doi.org/10.3390/molecules27196748
Chicago/Turabian StyleWu, Ling-Nan, Zhen-Yu Tian, and Wu Qin. 2022. "A Density Functional Theory and Microkinetic Study of Acetylene Partial Oxidation on the Perfect and Defective Cu2O (111) Surface Models" Molecules 27, no. 19: 6748. https://doi.org/10.3390/molecules27196748
APA StyleWu, L. -N., Tian, Z. -Y., & Qin, W. (2022). A Density Functional Theory and Microkinetic Study of Acetylene Partial Oxidation on the Perfect and Defective Cu2O (111) Surface Models. Molecules, 27(19), 6748. https://doi.org/10.3390/molecules27196748