Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Ultrasonic Hydrolysis and Extraction
2.2. Optimization of N-Ethoxycarbonylation Derivatization
2.3. Mass Spectra Identification of N-Ethoxycarbonylation Derivatives
2.4. Validation of Analytical Parameters
2.5. Analysis of Residual Diisocyanates and Related Diamines in PBAT Mulch Film Samples
3. Materials and Method
3.1. Chemicals and Reagent
3.2. Preparation of Standard Solution and Biodegradable Mulch Film Samples
3.3. Ultrasonic Hydrolysis and Extraction of Residual Diisocyanates and Related Diamines
3.4. N-Ethoxycarbonylation Derivatization of Diamines
3.5. Instruments and Chromatographic Conditions
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.Z.; Xie, H.X.; Ren, Z.H.; Ding, Y.P.; Mei, L.; Zhang, G.X.; Qin, X.L.; Siddique, K.H.M.; Liao, Y.C. Response of soil microbial community parameters to plastic film mulch: A meta-analysis. Geoderma 2022, 418, 115851. [Google Scholar] [CrossRef]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable plastic mulches: Impact on the agricultural. Int. Arch. Occup. Environ. Health 2005, 78, 459–466. [Google Scholar]
- Zarus, G.M.; Custodio, M.; Hunter, C.M.; Pappas, R.S. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks. Sci. Total Environ. 2021, 756, 144010. [Google Scholar] [CrossRef]
- Jiao, J.; Zeng, X.B.; Huang, X.B. An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)-PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar]
- Donchenko, A.; Aubin, S.; Gagné, S.; Spence, M.; Breau, L.; Lesage, J. Development of a method for quantification of toluene diisocyanate and methylenediphenyl diisocyanate migration from polyurethane foam sample surface to artificial sweat by HPLC-UV-MS. J. Chromatogr. B 2020, 1142, 122027. [Google Scholar] [CrossRef] [PubMed]
- Delebecq, E.; Pascault, J.P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118. [Google Scholar] [CrossRef]
- Pastore, G.; Gabrielli, S.; Leone, E.; Cortese, M.; Gentili, D.; Biondi, G.; Marcantoni, E. A novel treatment and derivatization for quantification of residual aromatic diisocyanates in polyamide resins. Sci. Rep. 2022, 12, 12993. [Google Scholar] [CrossRef] [PubMed]
- Lockey, J.E.; Redlich, C.A.; Streicher, R.; Pfahles-Hutchens, A.; Hakkinen, P.B.; Ellison, G.L.; Harber, P.; Utell, M.; Holland, J.; Comai, A.; et al. Isocyanates and human health: Multi-stakeholder information needs and research priorities. J. Occup. Environ. Med. 2015, 57, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Daoud, A.; Cloutier, P.L.; Gagné, S.; Breau, L.; Lesage, J. Development of a new SPE UPLC-MS/MS method for extraction and quantitation of toluene diamine on gloves following toluene diisocyanate exposure. Rapid Commun. Mass Spectrom. 2022, 36, e9340. [Google Scholar] [CrossRef] [PubMed]
- Lépine, M.; Sleno, L.; Lesage, J.; Gagné, S. A validated UPLC-MS/MS method for the determination of aliphatic and aromatic isocyanate exposure in human urine. Anal. Bioanal. Chem. 2020, 412, 753–762. [Google Scholar] [CrossRef]
- Krone, C.A. Diisocyanates and nonoccupational diseasea: Review. Arch. Environ. Health 2003, 58, 306–316. [Google Scholar] [CrossRef]
- Bengtström, L.; Salden, M.; Stec, A.A. The role of isocyanates in fire toxicity. Fire. Sci. Rev. 2016, 5, 1–23. [Google Scholar] [CrossRef]
- Cui, H.; Gao, W.C.; Lin, Y.C.; Zhang, J.; Yin, R.S.; Xiang, Z.M.; Zhang, S.; Zhou, S.; Chen, W.S.; Cai, K. Development of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of organic additives in biodegradable mulch films. Microchem. J. 2021, 160, 105722. [Google Scholar] [CrossRef]
- Sakai, T.; Morita, Y.; Kim, Y.; Tao, Y.X. LC-MS determination of urinary toluenediamine in workers exposed to toluenediisocyanat. Toxicol. Lett. 2022, 134, 259–264. [Google Scholar] [CrossRef]
- Maggy, L.; Sleno, L.; Lesage, J.; Gagné, S. A validated liquid chromatography/tandem mass spectrometry method for 4,4′-methylenedianiline quantitation in human urine as a measure of 4,4′-methylene diphenyl diisocyanate exposure. Rapid Commun. Mass Spectrom. 2019, 33, 600–606. [Google Scholar]
- Sun, Z.W.; Jin, Q.Q.; Yu, Y.X.; Cheng, J.; Ji, Z.Y.; Li, G.L.; You, J.M. A highly sensitive and selective method for analysis of biomarkers of diisocyanate exposure in human urine by high-performance liquid chromatography with intramolecular excimer-forming fluorescence derivatization. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 982–991. [Google Scholar] [CrossRef]
- Bhandari, D.; Ruhl, J.; Murphy, A.; McGahee, E.; Chambers, D.; Blount, B.C. Isotope dilution UPLC-APCI-MS/MS method for the quantitative measurement of aromatic diamines in human urine: Biomarkers of diisocyanate exposure. Anal. Chem. 2016, 88, 10687–10692. [Google Scholar] [CrossRef] [Green Version]
- Ibarra, V.G.; de Quirós, A.R.B.; Losada, P.P.; Sendón, R. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. Anal. Bioanal. Chem. 2018, 410, 3789–3803. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Morita, Y.; Roh, J.; Kim, H.; Kim, Y. Improvement in the GC-MS method for determining urinary toluene-diamine and its application to the biological monitoring of workers exposed to toluene-diisocyanate. Int. Arch. Occup. Environ. Health 2005, 78, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Shi, L.H.; Liu, X.Q.; Niu, W.X.; Xu, G.B. Determination of isocyanates by capillary electrophoresis with tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. Electrophoresis 2009, 30, 3926–3931. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, M.; Du, H.; Wang, F.; Mou, S.; Haddad, P.R. Organic analysis by ion chromatography: 1. Determination of aromatic amines and aromatic diisocyanates by cation-exchange chromatography with amperometric detection. J. Chromatogr. A 2002, 956, 215–220. [Google Scholar] [CrossRef]
- Mudiam, M.K.R.; Chauhan, A.; Jain, R.; Ch, R.; Fatima, G.; Malhotra, E.; Murthy, R.C. Development validation and comparison of two microextraction techniques for the rapid and sensitive determination of pregabalin in urine and pharmaceutical formulations after ethyl chloroformate derivatization followed by gas chromatography-mass spectrometric analysis. J. Pharm. Biomed. Anal. 2012, 70, 310–319. [Google Scholar] [PubMed]
- Skarping, G.; Dalene, M.; Lind, P. Determination of toluenediamine isomers by capillary gas chromatography and chemical ionization mass spectrometry with special reference to the biological monitoring of 2, 4- and 2, 6-toluene diisocyanate. J. Chromatogr. A 1994, 663, 199–210. [Google Scholar] [CrossRef]
- Řimnáčová, L.; Moos, M.; Opekar, S.; Vodrážka, P.; Pejchal, V.; Mráz, J.; PetrŠimek, P. Ethyl chloroformate mediated gas chromatographic-mass spectrometric biomonitoring of acidic biomarkers of occupational exposure and endogenous metabolites in human urine. J. Chromatogr. A 2021, 1656, 462–547. [Google Scholar] [CrossRef]
- Alessio, I.; Elisa, D.F.; Alberto, B.; Alessandra, B.; Alberto, M. Rapid and simultaneous determination of free aromatic carboxylic acids and phenols in commercial juices by GC-MS after ethyl chloroformate derivatization. Separations 2021, 9, 9. [Google Scholar]
- Petr, H.; Petr, S. Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying aagents. J. Curr. Pharmanal. 2006, 2, 23–43. [Google Scholar]
- Han, Y.H.; Choi, T.R.; Park, Y.L.; Song, H.S.; Choi, Y.K.; Choic, Y.K.; Kim, H.J.; Bhatia, S.K.; Gurav, R.; Park, K.; et al. Simultaneous monitoring of the bioconversion from lysine to glutaric acid by ethyl chloroformate derivatization and gas chromatography-mass spectrometry. Anal. Biochem. 2020, 597, 113688. [Google Scholar] [CrossRef]
- Chen, M.L.; Fan, Y.C.; Li, C.A.; Fei, D.; Zhu, Y. Determination of toluene diisocyanate in synthetic-rubber track by ion chromatography with ultraviolet detection after alkaline suppressor. Chin. Chem. Lett. 2009, 20, 207–209. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Li, S.; Zhu, Q.F.; Wang, Q.; Hussain, D.; Feng, Y.Q. Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-molecular weight compounds. Trac-Trend. Anal. Chem. 2019, 119, 115608. [Google Scholar] [CrossRef]
- Cai, K.; Zhao, H.N.; Yin, R.S.; Lin, Y.C.; Lei, B.; Wang, A.P.; Cai, B.; Gao, W.C.; Wang, F. Chiral determination of nornicotine, anatabine and anabasine in tobacco by achiral gas chromatography with (1S)-(-)-camphanic chloride derivatization: Application to enantiomeric profiling of cultivars and curing processes. J. Chromatogr. A 2020, 1626, 461361. [Google Scholar] [CrossRef]
- Latha, S.; Sivaranjani, G.; Dhanasekaran, D. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive mmetabolite. J. Crit. Rev. Microbiol. 2017, 43, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yang, S.; Zhang, N.; Zhang, J.H. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 2014, 21, 335–346. [Google Scholar] [CrossRef]
- Tsujikawa, K.; Mikuma, T.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Yuko, T.I.; Inoue, H. Degradation pathways of 4-methylmethcathinone in alkaline solution and stability of methcathinone analogs in various pH solutions. J. Forensic. Sci. Int. 2012, 220, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, K.M.; Al-Hazmi, A.H.; Alasiri, A.M.; El-Said Ali, M. A GC-MS method for detection and quantification of cathine, cathinone, methcathinone and ephedrine in oral fluid. J. Chromatogr. Sci. 2016, 54, 1271–1276. [Google Scholar] [CrossRef]
- Barret, J.; Gijsman, P.; Swagten, J.; Ronald, F.M.L. A molecular study towards the interaction of phenolic anti-oxidants, aromatic amines and HALS stabilizers in a thermo-oxidative ageing process. Polym. Degrad. Stab. 2002, 76, 441–448. [Google Scholar] [CrossRef]
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegelb, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. J. Free. Radical. Biomed. 2020, 159, 37–43. [Google Scholar] [CrossRef]
- Mudiam, M.K.R.; Jain, R.; Dua, V.; Singh, A.K.; Sharma, V.P.; Murthy, R.C. Application of ethyl chloroformate derivatization for solid-phase microextraction—Gas chromatography—Mass spectrometric determination of bisphenol-A in water and milk samples. Anal. Bioanal. Chem. 2011, 401, 1695–1701. [Google Scholar] [CrossRef]
- Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.ich.org/page/multidisciplinary-guidelines (accessed on 24 September 2022).
- Song, L.; Li, Y.; Meng, X.; Wang, T.; Shi, Y.; Wang, Y.; Shi, S.; Liu, L.Z. Crystallization, structure and significantly improved mechanical properties of PLA/PPC blends compatibilized with PLA-PPC copolymers produced by reactions Initiated with TBT or TDI. Polymer 2021, 13, 3245. [Google Scholar] [CrossRef]
- Derya, C.; Erdinc, D.; Mere, D.D.; Guralp, O. Preparation of hereto-armed POSS-cored star-shaped PCL-PLA/PLA composites and effect of different diisocyanates as compatibilizer. J. Mech. Behav. Biomed. 2021, 122, 104656. [Google Scholar]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef] [Green Version]
- Rajput, B.S.; Hai, T.A.P.; Burkart, M.D. High bio-content thermoplastic polyurethanes from azelaic acid. Molecules 2022, 27, 4885. [Google Scholar] [CrossRef] [PubMed]
Uncoded (Coded) Variables | Average Hydrolysis Efficiency of Each Class Diisocyanates | |||||||
---|---|---|---|---|---|---|---|---|
No | A/v/w | B/W | C/°C | D/min | Aliphatic | Cycloaliphatic | Amino Acid Ester | Aromatic |
1 | 60 (0) | 300 (1) | 50 (0) | 30 (−1) | 0.758 | 0.765 | 0.695 | 0.643 |
2 | 60 (0) | 200 (0) | 50 (0) | 60 (0) | 0.848 | 0.855 | 0.795 | 0.732 |
3 | 60 (0) | 300 (1) | 50 (0) | 90 (1) | 0.854 | 0.865 | 0.823 | 0.746 |
4 | 40 (−1) | 200 (0) | 70 (1) | 60 (0) | 0.911 | 0.923 | 0.652 | 0.795 |
5 | 80 (1) | 100 (−1) | 50 (0) | 60 (0) | 0.945 | 0.956 | 0.885 | 0.822 |
6 | 80 (1) | 200 (0) | 70 (1) | 60 (0) | 0.932 | 0.941 | 0.692 | 0.805 |
7 | 40 (−1) | 100 (−1) | 50 (0) | 60 (0) | 0.921 | 0.935 | 0.855 | 0.792 |
8 | 60 (0) | 200 (0) | 50 (0) | 60 (0) | 0.885 | 0.891 | 0.791 | 0.761 |
9 | 40 (−1) | 300 (1) | 50 (0) | 60 (0) | 0.862 | 0.885 | 0.785 | 0.751 |
10 | 60 (0) | 300 (1) | 30 (−1) | 60 (0) | 0.885 | 0.902 | 0.812 | 0.755 |
11 | 80 (1) | 200 (0) | 50 (0) | 90 (1) | 0.928 | 0.914 | 0.845 | 0.777 |
12 | 60 (0) | 300 (1) | 70 (1) | 60 (0) | 0.882 | 0.896 | 0.675 | 0.764 |
13 | 80 (1) | 200 (0) | 30 (−1) | 60 (0) | 0.905 | 0.912 | 0.821 | 0.812 |
14 | 60 (0) | 200 (0) | 50 (0) | 60 (0) | 0.865 | 0.885 | 0.818 | 0.752 |
15 | 60 (0) | 100 (−1) | 50 (0) | 30 (−1) | 0.865 | 0.883 | 0.754 | 0.761 |
16 | 60 (0) | 200 (0) | 50 (0) | 60 (0) | 0.892 | 0.912 | 0.789 | 0.785 |
17 | 40 (−1) | 200 (0) | 30 (−1) | 60 (0) | 0.918 | 0.932 | 0.849 | 0.798 |
18 | 80 (1) | 200 (0) | 50 (0) | 30 (−1) | 0.801 | 0.825 | 0.662 | 0.711 |
19 | 60 (0) | 100 (−1) | 50 (0) | 90 (1) | 0.932 | 0.918 | 0.835 | 0.794 |
20 | 60 (0) | 100 (−1) | 70 (1) | 60 (0) | 0.952 | 0.934 | 0.701 | 0.811 |
21 | 40 (−1) | 200 (0) | 50 (0) | 90 (1) | 0.912 | 0.915 | 0.823 | 0.799 |
22 | 60 (0) | 200 (0) | 30 (−1) | 90 (1) | 0.885 | 0.899 | 0.785 | 0.765 |
23 | 40 (−1) | 200 (0) | 50 (0) | 30 (−1) | 0.792 | 0.784 | 0.652 | 0.671 |
24 | 60 (0) | 100 (−1) | 30 (−1) | 60 (0) | 0.915 | 0.922 | 0.829 | 0.794 |
25 | 60 (0) | 200 (0) | 30 (−1) | 30 (−1) | 0.762 | 0.766 | 0.652 | 0.645 |
26 | 60 (0) | 200 (0) | 50 (0) | 60 (0) | 0.871 | 0.896 | 0.828 | 0.752 |
27 | 60 (0) | 200 (0) | 50 (0) | 60 (0) | 0.852 | 0.882 | 0.811 | 0.745 |
28 | 60 (0) | 200 (0) | 70 (1) | 90 (1) | 0.871 | 0.881 | 0.628 | 0.761 |
29 | 60 (0) | 200 (0) | 70 (1) | 30 (−1) | 0.785 | 0.795 | 0.605 | 0.682 |
30 | 80 (1) | 300 (1) | 50 (0) | 60 (0) | 0.835 | 0.845 | 0.802 | 0.722 |
ANOVA | Model p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
Lack of fit p-value | 0.2638 | 0.3110 | 0.0712 | 0.3418 | ||||
Coefficient of variation % | 2.49 | 2.53 | 3.61 | 2.72 | ||||
R2 | 0.9115 | 0.9018 | 0.9385 | 0.9034 |
Diamines | N-Ethoxycarbonyl Derivative of Diamines | ||||||
---|---|---|---|---|---|---|---|
Diamines | Structure | Class | pKa | Log Kow | RT a/min | RI b | Characteristic Ions c/m/z |
DAB | Aliphatic diamine | 10.51 | −0.69 | 25.487 | 1863.8 | 102; 142; 159; 187; 232 | |
DAP (IS) | Aliphatic diamine | 10.51 | −0.16 | 27.681 | 1974.3 | 102; 156; 128; 201; 246 | |
HDA | Aliphatic diamine | 10.51 | 0.04 | 29.562 | 2077.1 | 102; 130; 158; 215; 260 | |
IPDA | Cycloaliphatic diamine | 10.54 | 0.96 | 30.472 | 2185.7/ 2264.1 | 123; 212; 241; 269; 314 | |
LEE | Amino acid ester | 7.33 | — | 32.374 | 2264.1 | 156; 128; 226; 171; 272; 318 | |
2, 6 -TDA | Aromatic diamine | 8.42 | 2.34 | 39.626 | 2401.1 | 266; 121; 147; 194; 220 | |
2, 4 -TDA | Aromatic diamine | 9.31 | 1.99 | 40.239 | 2360.2 | 266; 121; 147; 194; 220 | |
DDCM | Cycloaliphatic diamine | 10.87 | 1.59 | 42.482 | 2384.5 | 128; 184; 265; 309; 354 |
Diamines | Linear Range/µg/mL | Regression Equation | R | LOD/µg/mL | LOQ/µg/mL | Stability |
---|---|---|---|---|---|---|
DAB | 0.02~2.00 | y = 0.385x + 0.0146 | 0.9999 | 0.0043 | 0.013 | 0.66 |
HDA | 0.04~4.00 | y = 0.315x + 0.0220 | 0.9997 | 0.0051 | 0.016 | 0.76 |
IPDA | 0.02~2.00 | y = 0.560x + 0.0265 | 0.9995 | 0.0025 | 0.0079 | 0.81 |
LEE | 0.02~2.00 | y = 0.359x − 0.00458 | 0.9992 | 0.0047 | 0.015 | 1.09 |
2, 6-TDA | 0.04~4.00 | y = 0.441x − 0.00637 | 0.9996 | 0.0036 | 0.011 | 2.35 |
2, 4-TDA | 0.04~4.00 | y = 0.487x + 0.00311 | 0.9996 | 0.0031 | 0.0097 | 1.57 |
DDCM | 0.02~2.00 | y = 0.269x + 0.00950 | 0.9990 | 0.0057 | 0.018 | 1.03 |
Diamines | Content/ µg/g | Concentration/µg/g | Recovery (Repeatability)/% | Reproducibility/% | ||
---|---|---|---|---|---|---|
Low Spiked | High Spiked | Low Spiked | High Spiked | |||
DAB | — | 0.10 | 1.00 | 98.3 (1.25) | 99.6 (0.89) | 2.12 |
HDA | — | 5.00 | 10.00 | 97.2 (2.00) | 101.2 (1.45) | 3.08 |
IPDA | — | 0.10 | 1.00 | 97.6 (2.44) | 99.7 (2.02) | 2.98 |
LEE | — | 0.10 | 1.00 | 95.5 (4.89) | 98.2 (3.18) | 6.12 |
2, 6-TDA | 21.85 | 10.00 | 20.00 | 94.7 (6.74) | 97.7 (4.65) | 8.34 |
2, 4-TDA | 63.81 | 30.00 | 60.00 | 93.9 (8.12) | 98.1 (6.24) | 10.56 |
DDCM | — | 0.10 | 1.00 | 95.3 (3.45) | 99.3 (2.77) | 5.11 |
Content/µg/g | PBAT-1 | PBAT-2 | PBAT-3 |
---|---|---|---|
DAB | ND a | ND | ND |
HDA | ND | ND | 10.23 ± 0.28 |
IPDA | ND | ND | ND |
LEE | ND | ND | ND |
2, 6-TDA | 0.69 ± 0.08 | 21.85 ± 1.64 | ND |
2, 4-TDA | 1.43 ± 0.15 | 63.81 ± 4.05 | ND |
DDCM | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, K.; Lin, Y.; Ma, Y.; Yang, Z.; Yu, L.; Zhang, J.; Xu, D.; Zeng, R.; Gao, W. Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS. Molecules 2022, 27, 6754. https://doi.org/10.3390/molecules27196754
Cai K, Lin Y, Ma Y, Yang Z, Yu L, Zhang J, Xu D, Zeng R, Gao W. Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS. Molecules. 2022; 27(19):6754. https://doi.org/10.3390/molecules27196754
Chicago/Turabian StyleCai, Kai, Yechun Lin, Yunfei Ma, Zhixiao Yang, Lei Yu, Jie Zhang, Dongqing Xu, Rong Zeng, and Weichang Gao. 2022. "Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS" Molecules 27, no. 19: 6754. https://doi.org/10.3390/molecules27196754
APA StyleCai, K., Lin, Y., Ma, Y., Yang, Z., Yu, L., Zhang, J., Xu, D., Zeng, R., & Gao, W. (2022). Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS. Molecules, 27(19), 6754. https://doi.org/10.3390/molecules27196754