Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis of Novel Tamoxifen Analogues
2.2. Evaluation of the Novel Tamoxifen Analogues for Their Antiproliferative Activity on Human Malignant Cell Lines
2.3. Electrochemical Measurements
2.4. DFT Calculations
3. Discussion
4. Materials and Methods
4.1. Synthesis of Novel Coupling Components for McMurry Reactions
4.1.1. 1-Ferrocenylazetidin-2-one (11) (Scheme 9)
4.1.2. 1,2-Dihydroferroceno[b]pyridin-4(3H)-one (12) (Scheme 10)
4.1.3. 1-Benzyl-1,2-dihydroferroceno[b]pyridin-4(3H)-one (13) (Scheme 11)
4.1.4. 1-(4-Fluorobenzyl)-1,2-dihydroferroceno[b]pyridin-4(3H)-one (14) (Scheme 12)
4.2. General Method for McMurry Reactions
4.2.1. 4,4′-((2,3-Dihydro-1H-Inden-1-Ylidene)methylene)diphenol (23) (Scheme 13)
4.2.2. 4,4′-((3,4-Dihydronaphthalen-1(2H)-Ylidene)methylene)diphenol (24) (Scheme 14)
4.2.3. 4,4′-(Chroman-4-Ylidenemethylene)diphenol (25) (Scheme 15)
4.2.4. 4,4′-(Thiochroman-4-Ylidenemethylene)diphenol (26) (Scheme 16)
4.2.5. 4,4′-((1-Methyl-1,5,6,7-Tetrahydro-4H-Indol-4-Ylidene)methylene)diphenol (31) (Scheme 17)
4.2.6. (4-Hydroxyphenyl)(4-(4-Hydroxyphenyl)-1-Methyl-4,5,6,7-Tetrahydro-1H-Indol-4-yl)methanone (31a) (Scheme 18)
4.2.7. 4,4′-((1-Acetyl-1,5,6,7-Tetrahydro-4H-Indol-4-Ylidene)methylene)diphenol (32) (Scheme 19)
4.2.8. 4,4′-((1-Methyl-1,5,6,7-Tetrahydro-4H-Indazol-4-Ylidene)methylene)diphenol (33) (Scheme 20)
4.2.9. 4,4′-((3,4-Dihydro-2H-Ferroceno[a]benzo)methylene)diphenol (38) (Scheme 22)
4.2.10. 4-(Bis(4-methoxyphenyl)methylene)-4,5,6,7-Tetrahydro-1H-Indole (43) (Scheme 23)
4.2.11. 3-(Bis(4-Methoxyphenyl)methylene)-2,3-Dihydrobenzofuran (44) (Scheme 24)
4.2.12. 2-(2-Hydroxyphenyl)-3-(4-Hydroxyphenyl)-1H-Inden-6-ol (46) (Scheme 25)
4.3. Electrochemical Characterizations, Experimental Conditions
4.4. Cell Culturing and Cytostasis Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, S.R.; Siddhanti, S.; Ciaccia, A.V.; Plouffe, L., Jr. A pharmacological review of selective oestrogen receptor modulators. Hum. Reprod. Update 2000, 6, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Kotoulas, I.G.; Cardamakis, E.; Michopoulos, J.; Mitropoulos, D.; Dounis, A. Tamoxifen treatment in male infertility. I. Effect on spermatozoa. Fertil. Steril. 1994, 61, 911–914. [Google Scholar] [CrossRef]
- Obrero, M.; David, V.Y.; Shapiro, D.J. Estrogen Receptor-dependent and Estrogen Receptor-independent Pathways for Tamoxifen and 4-Hydroxytamoxifen-induced Programmed Cell Death. J. Biol. Chem. 2002, 277, 45695–45703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.T.; Hofeldt, F.D.; Kidd, G.S. Tamoxifen therapy for painful idiopathic gynecomastia. South. Med. J. 1990, 83, 1283–1285. [Google Scholar] [CrossRef]
- Badia, E.; Morena, M.; Lauret, C.; Boulahtouf, A.; Boulle, N.; Cavaillès, V.; Balaguer, P.; Cristol, J.P. Effect of tamoxifen and fulvestrant long-term treatments on ROS production and (pro/anti)-oxidant enzymes mRNA levels in a MCF-7-derived breast cancer cell line. Breast Cancer-Tokyo 2016, 23692–23700. [Google Scholar] [CrossRef]
- Dewaele, M.; Maes, H.; Agostinis, P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 2010, 6, 838–854. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Heldt, J.M.; Guille-Collignon, M.; Lemaître, F.; Jaouen, G.; Vessières, A.; Amatore, C. Quantitative Analyses of ROS and RNS Production in Breast Cancer Cell Lines Incubated with Ferrocifens. ChemMedChem 2014, 9, 1286–1293. [Google Scholar] [CrossRef]
- Pigeon, P.; Wang, Y.; Top, S.; Najlaoui, F.; Garcia Alvarez, M.C.; Bignon, J.; Jaouen, G. A New Series of Succinimido-ferrociphenols and Related Heterocyclic Species Induce Strong Antiproliferative Effects, Especially against Ovarian Cancer Cells Resistant to Cisplatin. J. Med. Chem. 2017, 60, 8358–8368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldyrev, A.I.; Simons, J.; Zakrzewski, V.G.; von Niessen, W. Vertical and adiabatic ionization energies and electron affinities of new silicon-carbon (SinC) and silicon-oxygen (SinO) (n = 1–3) molecules. J. Phys. Chem. 1994, 98, 1427–1435. [Google Scholar] [CrossRef]
- Zhan, C.G.; Nichols, J.A.; Dixon, D.A. Electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A. 2003, 107, 4184–4195. [Google Scholar] [CrossRef]
- Marchi, S.; Giorgi, C.; Jan, M.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; et al. Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. J. Signal Transd. 2012, 2012, 329635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, D.; Zhao, Y. Oxidative Stress Induced by MnSOD-p53 Interaction: Pro- or Anti-Tumorigenic? J. Signal Transd. 2012, 2012, 101465. [Google Scholar] [CrossRef] [Green Version]
- Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; De Franco, M.; Menilli, L.; Montalbano, A. Insight on pyrimido [5,4-g] indolizine and pyrimido [4,5-c] pyrrolo [1,2-a] azepine systems as promising photosensitizers on malignant cells. Eur. J. Med. Chem. 2022, 237, 114399. [Google Scholar] [CrossRef]
- Barreca, M.; Spanò, V.; Raimondi, M.V.; Bivacqua, R.; Giuffrida, S.; Montalbano, A.; Barraja, P. GPCR inhibition in treating lymphoma. ACS Med. Chem. Lett. 2022, 13, 358–364. [Google Scholar] [CrossRef]
- Labbozzetta, M.; Barreca, M.; Spanò, V.; Raimondi, M.V.; Poma, P.; Notarbartolo, M.; Montalbano, A. Novel insights on [1,2] oxazolo [5,4-e] isoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev. Res. 2022, 83, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Amaike, K.; Maceiczyk, R.M.; Itami, K.; Yamaguchi, J. β-Selective C-H arylation of pyrroles leading to concise syntheses of lamellarins C and I. J. Am. Chem. Soc. 2014, 136, 13226–13232. [Google Scholar] [CrossRef]
- Spano, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Salvador, A.; Brun, P.; Vedaldi, D.; Diana, P.; Cirrincione, G.; Barraja, P. Pyrazolo[3,4-h]quinolines promising photosensitizing agents in the treatment of cancer. Eur. J. Med. Chem. 2015, 102, 334–351. [Google Scholar] [CrossRef]
- Top, S.; Tang, J.; Vessières, A.; Carrez, D.; Provot, C.; Jaouen, G. Ferrocenyl hydroxytamoxifen: A prototype for a new range of oestradiol receptor site-directed cytotoxics. Chem. Commun. 1996, 8, 955–956. [Google Scholar] [CrossRef]
- Kalabay, M.; Szász, Z.; Láng, O.; Lajkó, E.; Pállinger, É.; Duró, C.; Jernei, T.; Csámpai, A.; Takács, A.; Kőhidai, L. Investigation of the Antitumor Effects of Tamoxifen and Its Ferrocene-Linked Derivatives on Pancreatic and Breast Cancer Cell Lines. Pharmaceuticals 2022, 15, 314. [Google Scholar] [CrossRef] [PubMed]
- Jernei, T.; Bősze, S.; Szabó, R.; Hudecz, F.; Majrik, K.; Csámpai, A. N-ferrocenylpyridazinones and new organic analogues: Synthesis, cyclic voltammetry, DFT analysis and in vitro antiproliferative activity associated with ROS-generation. Tetrahedron 2017, 73, 6181–6192. [Google Scholar] [CrossRef]
- Anderson, K.W.; Tepe, J.J. Trifluoromethanesulfonic acid catalyzed Friedel–Crafts acylation of aromatics with β-lactams. Tetrahedron 2002, 58, 8475–8481. [Google Scholar] [CrossRef]
- Pal, A.; Ganguly, A.; Ghosh, A.; Yousuf, M.; Rathore, B.; Banerjee, R.; Adhikari, S. Bis-arylidene Oxindoles as Anti-Breast-Cancer Agents Acting via the Estrogen Receptor. ChemMedChem 2014, 9, 727–732. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.C.; Hillard, E.A.; Pigeon, P.; Rocha, D.D.; Rodrigues, F.A.; Montenegro, R.C.; Costa-Lotufo, L.V.; Goulart, M.O.F.; Jaouen, G. Biological evaluation of twenty-eight ferrocenyl tetrasubstituted olefins: Cancer cell growth inhibition, ROS production and hemolytic activity. Eur. J. Med. Chem. 2011, 46, 3778–3787. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.C.; Locke, E.R.; Soule, H.D. Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J. Biol. Chem. 1973, 248, 6251–6253. [Google Scholar] [CrossRef] [PubMed]
- Cailleau, R.; Olivé, M.; Cruciger, Q.V. Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization. In Vitro 1978, 14, 911–915. [Google Scholar] [CrossRef]
- Fabricant, R.N.; De Larco, J.E.; Todaro, G.J. Nerve growth factor receptors on melanoma cells in culture. Proc. Natl. Acad. Sci. USA 1977, 74, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Fogh, J.; Fogh, J.M.; Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 1977, 59, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.P.C.; Santos, A.E.; Custódio, J.B.A. Rethinking tamoxifen in the management of melanoma: New answers for an old question. Eur. J. Pharmacol. 2015, 764, 372–378. [Google Scholar] [CrossRef]
- Ziv, Y.; Gupta, M.K.; Milsom, J.W.; Vladisavljevic, A.; Kitago, K.; Fazio, V.W. The effect of tamoxifen on established human colorectal cancer cell lines in vitro. Anticancer Res. 1996, 16, 3767–3771. [Google Scholar] [PubMed]
- Bullock, J.P.; Palazzotto, M.C.; Mann, K.R. Electrochemistry and Infrared Spectroelectrochemistry of MnSnPh4−n (M=CpMo(CO)3, Mn(CO)5, CpFe(CO)2; n = 1, 2). Inorg. Chem. 1990, 29, 4413–4421. [Google Scholar] [CrossRef]
- Bullock, J.R.; Palazzotto, M.C.; Mann, K.R. Electrochemistry and infrared spectroelectrochemistry of [(5-C5R5)Fe(CO)2]2 (R=H, Me): Generation and characterization of [(5-C5R5)Fe(CO)2]2(PF6) complexes. Inorg Chem. 1991, 30, 1284–1293. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Godbout, N.; Salahub, D.R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem. 1992, 70, 560–571. [Google Scholar] [CrossRef] [Green Version]
- Paier, J.; Marsman, M.; Kresse, G. Why does the B3LYP hybrid functional fail for metals? J. Chem. Phys. 2007, 127, 024103. [Google Scholar] [CrossRef] [PubMed]
- Ongagna, J.M.; Fouegue, A.D.T.; Amana, B.A.; D’Ambassa, G.M.; Mfomo, J.Z.; Meva’A, L.M.; Mama, D.B. B3LYP, M06 and B3PW91 DFT assignment of nd8 metal-bis-(N-heterocyclic carbene) complexes. J. Mol. Model. 2020, 26, 246. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. THEOCHEM 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Yo, M.-H.; Xu, X.-M.; Bradley, A.; Carlson, B.A.; Patterson, A.D.; Gladyshev, V.N.; Hatfield, D.L. Targeting Thioredoxin Reductase 1 Reduction in Cancer Cells Inhibits Self-Sufficient Growth and DNA Replication. PLoS ONE 2007, 2, e1112. [Google Scholar] [CrossRef]
- Rundlöf, A.K.; Arnér, E.S.J. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid. Redox Signal. 2004, 6, 41–52. [Google Scholar] [CrossRef]
- Biaglow, J.E.; Miller, R.A. The thioredoxin reductase/thioredoxin system: Novel redox targets for cancer therapy. Cancer Biol. Ther. 2005, 4, 6–13. [Google Scholar] [CrossRef]
- Arnér, E.S.J.; Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol. 2006, 16, 420–426. [Google Scholar] [CrossRef]
- Fujino, G.; Noguchi, T.; Takeda, K.; Ichijo, H. Thioredoxin and protein kinases in redox signaling. Semin. Cancer Biol. 2006, 16, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, D.T.; Ali Emadi, E.M.; Tonissen, K.F.; Clarke, F.M. The thioredoxin-thioredoxin reductase system: Over-expression in human cancer. Anticancer Res. 2003, 23, 2425–2433. [Google Scholar] [PubMed]
- Lechner, S.; Müller-Ladner, U.; Neumann, E.; Spöttl, T.; Schlottmann, K.; Rüschoff, J.; Schölmerich, J.; Kullmann, F. Thioredoxin reductase 1 expression in colon cancer: Discrepancy between in vitro and in vivo findings. Lab. Investig. A J. Tech. Methods Pathol. 2003, 83, 1321–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Rigas, B. The thioredoxin system mediates redox-induced cell death in human colon cancer cells: Implications for the mechanism of action of anticancer agents. Cancer Res. 2008, 68, 8269–8277. [Google Scholar] [CrossRef] [Green Version]
- Citta, A.; Folda, A.; Bindoli, A.; Pascal, P.; Top, S.; Vessières, A.; Salmain, M.; Jaouen, G.; Rigobello, M.P. Evidence for Targeting Thioredoxin Reductases with Ferrocenyl Quinone Methides. A Possible Molecular Basis for the Antiproliferative Effect of Hydroxyferrocifens on Cancer Cells. J. Med. Chem. 2014, 57, 8849–8859. [Google Scholar] [CrossRef] [Green Version]
- Scalcon, V.; Citta, A.; Folda, A.; Bindoli, A.; Salmain, M.; Ciofini, I.; Blanchard, S.; José de Jésús Cázares-Marinero, J.d.J.; Wang, Y.; Pigeon, P.; et al. Enzymatic oxidation of ansa-ferrocifen leads to strong and selective thioredoxin reductase inhibition in vitro. J. Inorg. Biochem. 2016, 165, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Richard, M.-A.; Top, S.; Dansette, P.M.; Pigeon, P.; Vessières, A.; Mansuy, D.; Jaouen, G. Ferrocenyl Quinone Methide Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Angew. Chem. Int. Ed. Engl. 2016, 55, 10431–10434. [Google Scholar] [CrossRef] [Green Version]
- Hillard, E.A.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. Ferrocene-Mediated Proton-Coupled Electron Transfer in a Series of Ferrocifen-Type Breast-Cancer Drug Candidates. Angew. Chem. Int. Ed. 2006, 45, 285–290. [Google Scholar] [CrossRef]
- Vessières, A.; Wang, Y.; McGlinchey, M.J.; Jaouen, G. Multifaceted chemical behaviour of metallocene (M = Fe, Os) quinone methides. Their contribution to biology. Coord. Chem. Rev. 2021, 430, 213658. [Google Scholar] [CrossRef]
- Gan, F.F.; Kaminska, K.K.; Yang, H.; Liew, C.Y.; Leow, P.C.; So, C.L.; Tu, L.N.; Roy, A.; Yap, C.W.; Kang, T.S.; et al. Identification of Michael acceptor-centric pharmacophores with substituents that yield strong thioredoxin reductase inhibitory character correlated to antiproliferative activity. Antioxid. Redox Signal. 2013, 19, 1149–1165. [Google Scholar] [CrossRef]
- Wang, Y.; Pigeon, P.; Li, W.; Yan, J.; Dansette, P.M.; Othman, M.; Michael, J.; McGlinchey, M.J.; Jaouen, G. Diversity-oriented synthesis and bioactivity evaluation of N-substituted ferrocifen compounds as novel antiproliferative agents against TNBC cancer cells. Eur. J. Med. Chem. 2022, 234, 114202. [Google Scholar] [CrossRef] [PubMed]
- Hamels, D.; Dansette, P.M.; Hillard, E.A.; Top, S.; Vessières, A.; Herson, P.; Jaouen, G.; Mansuy, D. Ferrocenyl Quinone Methides as Strong Antiproliferative Agents: Formation by Metabolic and Chemical Oxidation of Ferrocenyl Phenols. Angew. Chem. Int. Ed. 2009, 48, 9124–9126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, G.; Zhuang, X.; Guo, M. Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G0/G1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. Oxid. Med. Cell. Longev. 2021, 2021, 8807676. [Google Scholar] [CrossRef] [PubMed]
- Chok, K.C.; Koh, R.Y.; Ng, M.G.; Ng, P.Y.; Chye, S.M. Melatonin Induces Autophagy via Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress Pathway in Colorectal Cancer Cells. Molecules 2021, 26, 5038. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol. 2012, 40, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Maximov, P.Y.; Myers, C.B.; Curpan, R.F.; Joan, S.; Lewis-Wambi, J.S.; Jordan, V.C. Structure−Function Relationships of Estrogenic Triphenylethylenes Related to Endoxifen and 4-Hydroxytamoxifen. J. Med. Chem. 2010, 53, 3273–3283. [Google Scholar] [CrossRef] [Green Version]
- Földesi, T.; Sipos, G.; Adamik, R.; Nagy, B.; Tóth, B.L.; Bényei, A.; Szekeres, K.J.; Láng, G.G.; Demeter, A.; Peelen, J.T.; et al. Design and application of diimine-based copper(I) complexes in photoredox catalysis. Org. Biomol. Chem. 2019, 17, 8343–8347. [Google Scholar] [CrossRef] [Green Version]
- Gennett, T.; Milner, D.F.; Weaver, M.J. Role of solvent reorganization dynamics in electron-transfer processes. Theory-experiment comparisons for electrochemical and homogeneous electron exchange involving metallocene redox couples. J. Phys. Chem. 1985, 89, 2787–2794. [Google Scholar] [CrossRef]
- Bao, D.; Millare, B.; Xia, W.; Steyer, B.G.; Gerasimenko, A.A.; Ferreira, A.; Contreras, A.; Vullev, V.I. Electrochemical Oxidation of Ferrocene: A Strong Dependence on the Concentration of the Supporting Electrolyte for Nonpolar Solvents. J. Phys. Chem. A 2009, 113, 1259–1267. [Google Scholar] [CrossRef]
- Elvington, M.C.; Brewer, K.J. Applications of Physical Methods to Inorganic and Bioinorganic Chemistry, 1st ed.; Scott, R.A., Lukehart, C.M., Eds.; Wiley & Sons Ltd.: Chichester, UK, 2007; Volume 2, pp. 17–37. ISBN 978-0-470-03217-6. [Google Scholar]
- Slater, T.F.; Sawyerand, B.; Strauli, U. Studies on succinate-tetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta. 1963, 77, 383–393. [Google Scholar] [CrossRef]
- Liu, Y.B.; Peterson, D.A.; Kimuraand, H.; Schubert, D.J. Mechanism of Cellular 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Reduction. J. Neurochem. 1997, 69, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Altman, F.P. Tetrazolium Salts and Formazans. Prog. Histochem. Cytochem. 1976, 9, 1–56. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R.J. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Immunol. Methods. 1986, 89, 271–277. [Google Scholar] [CrossRef]
Compound | IC50/µM | Epc [V] | EHOMO, v 1 [eV] | Ei, v 1 [eV] | EHOMO, a 2 [eV] | Ei, a 2 [eV] | EHOMO, w 3 [eV] | Ei, w 3 [eV] | |||
---|---|---|---|---|---|---|---|---|---|---|---|
MCF-7 | MDA-MB 231 | A2058 | HT-29 | ||||||||
2 | 56.7 | 51 | 14.2 | 20. 8 | 0.936 | −5.526 | 6.635 | −5.72 | 5.361 | −5.728 | 5.344 |
18 | 3.4 | 7.9 | 12.09 | 4.4 | 0.483 | −5.351 | 5.877 | −5.503 | 4.550 | −5.509 | 4.529 |
23 | 53.7 | 52.3 | 23.53 | 27.6 | 0.752 | −5.396 | 6.496 | −5.581 | 5.224 | −5.589 | 5.209 |
24 | 56.7 | 55.3 | 35.07 | 38.1 | 0.698 | −5.389 | 6.476 | −5.577 | 5.218 | −5.584 | 5.201 |
25 | >100 | >100 | 28.15 | 27.9 | 1.224 | −5.438 | 6.531 | −5.604 | 5.247 | −5.61 | 5.229 |
26 | >100 | >100 | >50 | >50 | 0.698 | −5.459 | 6.55 | −5.637 | 5.28 | −5.644 | 5.263 |
28 | 6.2 | 15.5 | >50 | 5.7 | 0.437 | −5.567 | 6.683 | −5.793 | 5.447 | −5.801 | 5.43 |
31 | 48.3 | 53.7 | >50 | 15.7 | 0.637 | −4.986 | 5.966 | −5.34 | 4.774 | −5.356 | 4.759 |
31a | 44.5 | 40 | >50 | >50 | 0.752 | −5.599 | 6.989 | −5.774 | 5.528 | −5.782 | 5.503 |
32 | >100 | 100 | 27.6 | >50 | 0.615 | −5.318 | 6.263 | −5.532 | 5.017 | −5.542 | 4.999 |
334 | 37.8 | 49.6 | 19.22 | >50 | 0.781 | −5.294 | 6.25 | −5.619 | 5.018 | −5.637 | 5.002 |
38 | 33.1 | 43.9 | >50 | 15.5 | 0.354 | −5.26 | 5.902 | −5.434 | 4.572 | −5.441 | 4.551 |
42 | 19.3 | 20 | >50 | >50 | 1.265 | −5.434 | 6.501 | −5.685 | 5.327 | −5.696 | 5.311 |
43 | 15.9 | 17.8 | >50 | 7.6 | 0.742 | −5.318 | 6.375 | −5.307 | 4.796 | −5.325 | 4.782 |
44 | n.d. | 45.7 | 28.77 | 15 | 0.895 | −4.968 | 5.944 | −5.552 | 5.170 | −5.559 | 5.153 |
46 | 14.07 | 48.8 | 13.5 | 14.9 | 0.752 | −5.313 | 6.460 | −5.573 | 5.234 | −5.492 | 5.087 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duró, C.; Jernei, T.; Szekeres, K.J.; Láng, G.G.; Oláh-Szabó, R.; Bősze, S.; Szabó, I.; Hudecz, F.; Csámpai, A. Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character. Molecules 2022, 27, 6758. https://doi.org/10.3390/molecules27196758
Duró C, Jernei T, Szekeres KJ, Láng GG, Oláh-Szabó R, Bősze S, Szabó I, Hudecz F, Csámpai A. Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character. Molecules. 2022; 27(19):6758. https://doi.org/10.3390/molecules27196758
Chicago/Turabian StyleDuró, Cintia, Tamás Jernei, Krisztina J. Szekeres, Győző G. Láng, Rita Oláh-Szabó, Szilvia Bősze, Ildikó Szabó, Ferenc Hudecz, and Antal Csámpai. 2022. "Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character" Molecules 27, no. 19: 6758. https://doi.org/10.3390/molecules27196758
APA StyleDuró, C., Jernei, T., Szekeres, K. J., Láng, G. G., Oláh-Szabó, R., Bősze, S., Szabó, I., Hudecz, F., & Csámpai, A. (2022). Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character. Molecules, 27(19), 6758. https://doi.org/10.3390/molecules27196758