Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology Characterization of GQDs
2.2. Structural Characterization of GQDs
2.3. Characterization of Optical Properties of GQDs
2.4. GQDs for Ion Detection
3. Materials and Methods
3.1. Experimental Material
3.2. Experimental Facilities
3.3. Synthesis of GQDs
3.4. Metal Ion Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gan, Y.; Yin, G.; Wang, J.; Yin, P. A novel AIE fluorescent probe for the monitoring of aluminum ions in living cells and zebrafish. Analyst 2022, 147, 2828–2833. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.P.d.S.; da Silva, M.G.C.; Vieira, M.G.A. Biosorption of aluminum ions from aqueous solutions using non-conventional low-cost materials: A review. J. Water Process Eng. 2021, 40, 101925. [Google Scholar] [CrossRef]
- Kan, C.; Wang, X.; Shao, X.; Wu, L.; Qiu, S.; Zhu, J. A novel fluorescent probe of aluminium ions based on rhodamine derivatives and its application in biological imaging. New J. Chem. 2021, 45, 8918–8924. [Google Scholar] [CrossRef]
- Lian, G.; Hu, K.; Wang, Y.; Shao, T.; Qi, X.; Zhou, M.; Liu, Y.; Jin, G. Base on spectroscopic properties response fluorescence probe for rapid, sensitive and selective detection of aluminum ions in wastewater. Inorg. Chem. Commun. 2022, 137, 109171. [Google Scholar] [CrossRef]
- Ngeontae, W.; Chaiendoo, K.; Ngamdee, K.; Ruangchai, S.; Saiyasombat, C.; Busayaporn, W.; Ittisanronnachai, S.; Promarak, V. A highly selective fluorescent sensor for manganese(II) ion detection based on N,S-doped carbon dots triggered by manganese oxide. Dye. Pigment. 2022, 203, 110325. [Google Scholar] [CrossRef]
- Yao, M.; Huang, J.; Deng, Z.; Jin, W.; Yuan, Y.; Nie, J.; Wang, H.; Du, F.; Zhang, Y. Transforming glucose into fluorescent graphene quantum dots via microwave radiation for sensitive detection of Al3+ ions based on aggregation-induced enhanced emission. Analyst 2020, 145, 6981–6986. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Liu, Y.; Pan, D.; Li, Z.; Wang, L.; Wu, M. Three Minute Ultrarapid Microwave-Assisted Synthesis of Bright Fluorescent Graphene Quantum Dots for Live Cell Staining and White LEDs. ACS Appl. Nano Mater. 2018, 1, 1623–1630. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Z.; Shen, X.; Wang, L. One-Pot Synthesis of Orange Emissive Carbon Quantum Dots for All-Type High Color Rendering Index White Light-Emitting Diodes. ACS Sustain. Chem. Eng. 2022, 10, 8289–8296. [Google Scholar] [CrossRef]
- Le, M.; Hu, B.; Wu, M.; Guo, H.; Wang, L. Construction of Co,N-Coordinated Carbon Dots for Efficient Oxygen Reduction Reaction. Molecules 2022, 27, 5021. [Google Scholar] [CrossRef]
- Huang, L.; Xie, C.; Wu, Z.; Ji, M.; Shan, J.; Cheng, P.; Liu, J.; Chen, L.; Zhou, B.; Sun, W. Lateral size homogeneous and doping degree controllable potassium-doped graphene quantum dots by mechanochemical reaction. Chem. Eng. J. 2022, 440, 135800. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, M.; Wang, Z.; Guo, H.; Wang, L.; Wu, M. Phosphorescence Tuning of Fluorine, Oxygen-Codoped Carbon Dots by Substrate Engineering. ACS Sustain. Chem. Eng. 2021, 9, 16262–16269. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Shi, H.; Yan, Y.; Liu, E.; Hu, X.; Fan, J. A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury(II) based on sulfur doped carbon quantum dots. Mater. Chem. Phys. 2019, 232, 145–151. [Google Scholar] [CrossRef]
- Li, W.; Jiang, N.; Wu, B.; Liu, Y.; Zhang, L.; He, J. Chlorine Modulation Fluorescent Performance of Seaweed-Derived Graphene Quantum Dots for Long-Wavelength Excitation Cell-Imaging Application. Molecules 2021, 26, 4994. [Google Scholar] [CrossRef] [PubMed]
- Thangadurai, T.D.; Manjubaashini, N.; Nataraj, D.; Gomes, V.; Lee, Y.I. A review on graphene quantum dots, an emerging luminescent carbon nanolights: Healthcare and Environmental applications. Mater. Sci. Eng. B 2022, 278, 115633. [Google Scholar] [CrossRef]
- Su, J.; Zhang, X.; Tong, X.; Wang, X.; Yang, P.; Yao, F.; Guo, R.; Yuan, C. Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging. Mater. Lett. 2020, 271, 127806. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Li, W.; Guo, H.; Li, G.; Chi, Z.; Chen, H.; Wang, L.; Liu, Y.; Chen, K.; Le, M.; Han, Y.; et al. White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horizons 2020, 5, 928–933. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, Y.; Ren, W.; Bai, A.; Li, X.; Hu, Y. Preparation of graphene quantum dots with glycine as nitrogen source and its interaction with human serum albumin. Luminescence 2021, 36, 894–903. [Google Scholar] [CrossRef]
- Lu, H.; Li, W.; Dong, H.; Wei, M. Graphene Quantum Dots for Optical Bioimaging. Small 2019, 15, e1902136. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, X.; Zhou, S.; Xie, Z.; Zalevsky, Z. Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing. NPG Asia Mater. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Han, Y.; Tang, B.; Wang, L.; Bao, H.; Lu, Y.; Guan, C.; Zhang, L.; Le, M.; Liu, Z.; Wu, M. Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields. ACS Nano 2020, 14, 14761–14768. [Google Scholar] [CrossRef] [PubMed]
- Jyotsna, S.; Sadhu, S.; Sharma, V.; Gupta, P.; Sharma, G.; Poddar, P. Luminescence turn-off detection of metal ions and explosives using graphene quantum dots. MRS Commun. 2022, 12, 168–174. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Li, Y.; Wu, B.; Chen, H.; Wang, R.; Xu, T.; Guo, H.; Li, W.; Joyner, J.; et al. Designing a sustainable fluorescent targeting probe for superselective nucleus imaging. Carbon 2021, 180, 48–55. [Google Scholar] [CrossRef]
- Yang, G.; Meng, X.; Fang, S.; Wang, L.; Wang, Z.; Wang, F.; Duan, H.; Hao, A. Two novel pyrazole-based chemosensors: “naked-eye” colorimetric recognition of Ni2+ and Al3+ in alcohol and aqueous DMF media. New J. Chem. 2018, 42, 14630–14641. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Y.; Zhao, G.; Wang, L.; Meng, X.; Zhou, J.; Duan, H. A novel fluorescein-based fluorescent probe for detection Hg2+ and bioimaging applications. J. Mol. Struct. 2022, 1255, 132427. [Google Scholar] [CrossRef]
- Polosan, S.; Ciobotaru, C.C.; Ciobotaru, I.C. Charge Transfer from Alq3-5Cl to Graphene Oxide in Donor–Acceptor Heterostructures. J. Electron. Mater. 2019, 48, 7184–7191. [Google Scholar] [CrossRef]
- Radu, I.; Polosan, S.; Enculescu, I.; Iovu, H. Cathodoluminescence and Raman analysis of the finite-size effects in mer-Alq3 structure. Opt. Mater. 2012, 35, 268–273. [Google Scholar] [CrossRef]
- Darvishi, E.; Shekarbeygi, Z.; Yousefinezhad, S.; Izadi, Z.; Saboury, A.A.; Derakhshankhah, H.; Varnamkhasti, B.S. Green synthesis of nanocarbon dots using hydrothermal carbonization of lysine amino acid and its application in detection of duloxetine. J. Iran. Chem. Soc. 2021, 18, 2863–2872. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772. [Google Scholar] [CrossRef]
- Liao, X.; Chen, C.; Wang, P.; Zhou, R.; Zhao, X.; Fan, H.; Huang, Z. Carbon dots derived from cellobiose for temperature and phosalone detection. Mater. Res. Bull. 2022, 151, 111790. [Google Scholar] [CrossRef]
- Chang, D.; Zhao, Z.; Niu, W.; Shi, L.; Yang, Y. Iron ion sensing and in vitro and in vivo imaging based on bright blue-fluorescent carbon dots. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2021, 260, 119964. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, W.; Zhou, Z.; Zhang, H.; Zhang, X.; Zhuang, J.; Liu, Y.; Lei, B.; Hu, C. A Universal Strategy for Activating the Multicolor Room-Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angew. Chem. 2019, 131, 7356–7361. [Google Scholar] [CrossRef]
- Shen, T.-Y.; Jia, P.-Y.; Chen, D.-S.; Wang, L.-N. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 248, 119282. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zan, M.; Cao, L.; Peng, J.; Wang, P.; Pang, X.; Zhang, Y.; Li, L.; Mei, Q.; Dong, W.-F. F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchem. J. 2022, 179, 107453. [Google Scholar] [CrossRef]
- Meng, A.; Huangfu, B.; Sheng, L.; Hong, X.; Li, Z. One-pot hydrothermal synthesis of boron and nitrogen co-doped carbon dots for copper ion assay and multicolor cell imaging using fluorescence quenchometric method. Microchem. J. 2021, 174, 106981. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Kao, C.-P.; Gandomi, Y.A.; Juang, R.-S.; Chang, J.-K.; Zhang, R.-S. Oxygen reduction reactions from boron-doped graphene quantum dot catalyst electrodes in acidic and alkaline electrolytes. J. Taiwan Inst. Chem. Eng. 2022, 133, 104196. [Google Scholar] [CrossRef]
- Rodwihok, C.; Van Tam, T.; Choi, W.M.; Suwannakaew, M.; Woo, S.W.; Wongratanaphisan, D.; Kim, H.S. Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications. Nanomaterials 2022, 12, 702. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, L.; Bai, Y.; Qin, J.; Chen, M.; Feng, F. A novel ratiometric fluorescent probe for detection of l-glutamic acid based on dual-emission carbon dots. Talanta 2022, 245, 123416. [Google Scholar] [CrossRef]
- Cai, K.-B.; Huang, H.-Y.; Hsieh, M.-L.; Chen, P.-W.; Chiang, S.-E.; Chang, S.H.; Shen, J.-L.; Liu, W.-R.; Yuan, C.-T. Two-Dimensional Self-Assembly of Boric Acid-Functionalized Graphene Quantum Dots: Tunable and Superior Optical Properties for Efficient Eco-Friendly Luminescent Solar Concentrators. ACS Nano 2022, 16, 3994–4003. [Google Scholar] [CrossRef]
- Yu, Q.; Jiang, J.; Chen, Z.; Han, C.; Zhang, X.; Yang, S.; Zhou, P.; Deng, T.; Yu, C. A multilevel fluorometric biosensor based on boric acid embedded in carbon dots to detect intracellular and serum glucose. Sens. Actuators B Chem. 2021, 350, 130898. [Google Scholar] [CrossRef]
- Qin, D.; Jiang, X.; Mo, G.; Feng, J.; Deng, B. Boron nitride quantum dots as electrochemiluminescence coreactants of rGO@Au@Ru–SiO2 for label-free detection of AFP in human serum. Electrochim. Acta 2020, 335, 135621. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Tian, F.-F.; Fan, X.-Y.; Jiang, F.-L.; Liu, Y. Fabrication of an acylhydrazone based fluorescence probe for Al3+. Sens. Actuators B Chem. 2017, 240, 916–925. [Google Scholar] [CrossRef]
- Torawane, P.; Tayade, K.; Bothra, S.; Sahoo, S.; Singh, N.; Borse, A.; Kuwar, A. A highly selective and sensitive fluorescent ‘turn-on’ chemosensor for Al3+ based on C N isomerisation mechanism with nanomolar detection. Sens. Actuators B Chem. 2016, 222, 562–566. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, L.; Jiang, N.; Chen, Y.; Gao, J.; Zhang, J.; Yang, B.; Liu, J. Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection. Molecules 2022, 27, 6771. https://doi.org/10.3390/molecules27196771
Li W, Zhang L, Jiang N, Chen Y, Gao J, Zhang J, Yang B, Liu J. Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection. Molecules. 2022; 27(19):6771. https://doi.org/10.3390/molecules27196771
Chicago/Turabian StyleLi, Weitao, Luoman Zhang, Ningjia Jiang, Yongqian Chen, Jie Gao, Jihang Zhang, Baoshuo Yang, and Jialin Liu. 2022. "Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection" Molecules 27, no. 19: 6771. https://doi.org/10.3390/molecules27196771
APA StyleLi, W., Zhang, L., Jiang, N., Chen, Y., Gao, J., Zhang, J., Yang, B., & Liu, J. (2022). Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection. Molecules, 27(19), 6771. https://doi.org/10.3390/molecules27196771