A Review of Bioactive Compounds and Antioxidant Activity Properties of Piper Species
Abstract
:1. Introduction
2. Distribution, Botanical, Traditional Use, and Pharmacological Properties of Five Piper Species
3. Chemical Composition of Five Piper Species
3.1. Piper amalago L.
3.2. Piper betle L.
3.3. Piper hispidum Sw.
3.4. Piper Longum L.
3.5. Piper Umbellatum L.
4. Antioxidant Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: Current status and future prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.; Aiyelaagbe, O.; Usman, L.; Ameen, O.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar]
- Qazi, M.A.; Molvi, K.I. Free radicals and their management. Am. J. Pharm. Health Res. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015, 6, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Padureanu, R.; Albu, C.V.; Mititelu, R.R.; Bacanoiu, M.V.; Docea, A.O.; Calina, D.; Padureanu, V.; Olaru, G.; Sandu, R.E.; Malin, R.D. Oxidative stress and inflammation interdependence in multiple sclerosis. J. Clin. Med. 2019, 8, 1815. [Google Scholar] [CrossRef] [Green Version]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Chouhan, B.; Poonar, N. Antioxidants: Sources and mportance. Int. J. Sci. Eng. Res. 2017, 5, 38–41. [Google Scholar]
- Kumar, S.; Malhotra, S.; Prasad, A.K.; Van der Eycken, E.V.; Bracke, M.E.; Stetler-Stevenson, W.G.; Parmar, V.S.; Ghosh, B. Anti-inflammatory and antioxidant properties of Piper species: A perspective from screening to molecular mechanisms. Curr. Top. Med. Chem. 2015, 15, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Nahak, G.; Sahu, R. Phytochemical evaluation and antioxidant activity of Piper cubeba and Piper nigrum. J. Appl. Pharm. Sci. 2011, 1, 153–157. [Google Scholar]
- Jaiswal, S.; Patel, M.; Saxena, D.; Naik, S. Antioxidant properties of Piper betel (L.) leaf extracts from six different geographical domain of India. J. Bioresour. Eng. Technol. 2014, 1, 18–26. [Google Scholar]
- Alves, H.d.S.; Rocha, W.R.V.d.; Braz-Filho, R.; Chaves, M.C.d.O. Isolation of monoterpene dihydrochalcones from Piper montealegreanum Yuncker (Piperaceae). Molecules 2017, 22, 874. [Google Scholar] [CrossRef]
- Atiya, A.; Sinha, B.N.; Ranjan Lal, U. New chemical constituents from the Piper betle Linn.(Piperaceae). Nat. Prod. Res. 2018, 32, 1080–1087. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Kim, K.; Kim, Y.-D.; Lee, S.-E. Naturally occurring Piper plant amides potential in agricultural and pharmaceutical industries: Perspectives of piperine and piperlongumine. Appl. Biol. Chem. 2019, 62, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jayalakshmi, B.; Raveesha, K.; Murali, M.; Amruthesh, K. Phytochemical, antibacterial and antioxidant studies on leaf extracts of Piper betle L. Int. J. Pharm. Pharm. Sci. 2015, 7, 23–29. [Google Scholar]
- Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive compounds from medicinal plants: Focus on Piper species. S. Afr. J. Bot. 2017, 112, 54–69. [Google Scholar] [CrossRef]
- Alam, B.; Akter, F.; Parvin, N.; Pia, R.S.; Akter, S.; Chowdhury, J.; Sifath-E-Jahan, K.; Haque, E. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves. Avicenna J. Phytomedicine 2013, 3, 112. [Google Scholar]
- Astuti, P.; Nababan, O.A. Antimicrobial and cytotoxic activities of endophytic fungi isolated from Piper crocatum Ruiz & Pav. Asian Pac. J. Trop. Biomed. 2014, 4, S592–S596. [Google Scholar]
- Sugumaran, M.; Gandhi, M.S.; Sankarnarayanan, K.; Yokesh, M.; Poornima, M.; Rajasekhar, S. Chemical composition and antimicrobial activity of vellaikodi variety of Piper betle Linn leaf oil against dental pathogens. Int. J. Pharm. Tech. Res. 2011, 3, 2135–2139. [Google Scholar]
- Barh, D.; Barve, N.; Gupta, K.; Chandra, S.; Jain, N.; Tiwari, S.; Leon-Sicairos, N.; Canizalez-Roman, A.; Rodrigues dos Santos, A.; Hassan, S.S. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PLoS ONE 2013, 8, e52773. [Google Scholar] [CrossRef] [PubMed]
- Vadlapudi, V.; Kaladhar, D. Phytochemical evaluation and molecular characterization of some important medicinal plants. Asian Pac. J. Trop. Dis. 2012, 2, S26–S32. [Google Scholar] [CrossRef]
- Gutierrez, R.M.P.; Gonzalez, A.M.N.; Hoyo-Vadillo, C. Alkaloids from Piper: A review of its phytochemistry and pharmacology. Mini Rev. Med. Chem. 2013, 13, 163–193. [Google Scholar]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, A.L.; Novaes, A.d.S.; Polidoro, A.d.S.; de Barros, M.E.; Mota, J.S.; Lima, D.B.; Krause, L.C.; Cardoso, C.A.; Jacques, R.A.; Caramão, E.B. Chemical characterisation of Piper amalago (Piperaceae) essential oil by comprehensive two-dimensional gas chromatography coupled with rapid-scanning quadrupole mass spectrometry (GC× GC/qMS) and their antilithiasic activity and acute toxicity. Phytochem. Anal. 2018, 29, 432–445. [Google Scholar] [CrossRef]
- Dos Santos, V.L.; Franco, C.R.; Amano, E.; Messias-Reason, I.J.; Budel, J.M. Anatomical investigations of Piper amalago (jaborandi-manso) for the quality control. Rev. Bras. De Farmacogn. 2015, 25, 85–91. [Google Scholar] [CrossRef]
- Da Silva Novaes, A.; da Silva Mota, J.; Barison, A.; Veber, C.L.; Negrão, F.J.; Kassuya, C.A.L.; de Barros, M.E. Diuretic and antilithiasic activities of ethanolic extract from Piper amalago (Piperaceae). Phytomedicine 2014, 21, 523–528. [Google Scholar] [CrossRef]
- Da Silva Arrigo, J.; Balen, E.; Júnior, U.L.; da Silva Mota, J.; Iwamoto, R.D.; Barison, A.; Sugizaki, M.M.; Kassuya, C.A.L. Anti-nociceptive, anti-hyperalgesic and anti-arthritic activity of amides and extract obtained from Piper amalago in rodents. J. Ethnopharmacol. 2016, 179, 101–109. [Google Scholar] [CrossRef]
- Durant-Archibold, A.A.; Santana, A.I.; Gupta, M.P. Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. J. Ethnopharmacol. 2018, 217, 63–82. [Google Scholar] [CrossRef]
- dos Santos, V.L.P.; Franco, C.R.C.; Wagner, R.; Silva, C.D.; dos Santos, G.F.; da Cunha, R.S.; Stinghen, A.E.M.; Monteiro, L.M.; Bussade, J.E.; Budel, J.M. In vitro study after exposure to the aqueous extract of Piper amalago L. shows changes of morphology, proliferation, cytoskeleton and molecules of the extracellular matrix. Res. Soc. Dev. 2021, 10, e0110413289. [Google Scholar] [CrossRef]
- Araujo Baptista, L.; Rondón Rivas, M.; Cruz Tenempaguay, R.; Guayanlema Chávez, J.; Vargas Córdova, C.; Morocho Zaragocin, S.; Cornejo Sotomayor, S. Antimicrobial activity of the essential oil of Piper amalago L.(Piperaceae) collected in coastal Ecuador. Pharmacol. Online 2019, 3, 15–27. [Google Scholar]
- Santos, V.L.P.d.; Lima, C.P.d.; Cavichiolo, C.R.; Monteiro, L.M.; Budel, J.M.; Reason, I.M. Determination on The Chemical Groups In The Lyophilized Aqueos Extract Obtained From The Leaves of Piper amalago L. World J. Pharm. Sci. 2020, 9, 109–120. [Google Scholar]
- Carrara, V.; Vieira, S.; De Paula, R.; Rodrigues, V.; Magalhães, L.; Cortez, D.; Da Silva Filho, A. In vitro schistosomicidal effects of aqueous and dichloromethane fractions from leaves and stems of Piper species and the isolation of an active amide from P. amalago L.(Piperaceae). J. Helminthol. 2014, 88, 321–326. [Google Scholar] [CrossRef]
- Carrara, V.d.S.; Serra, L.Z.; Cardozo-Filho, L.; Cunha-Júnior, E.F.; Torres-Santos, E.C.; Cortez, D.A.G. HPLC analysis of supercritical carbon dioxide and compressed propane extracts from Piper amalago L. with antileishmanial activity. Molecules 2011, 17, 15–33. [Google Scholar] [CrossRef]
- Lopes, J.J.; Marx, C.; Ingrassia, R.; Picada, J.N.; Pereira, P.; Ferraz, A.d.B.F. Neurobehavioral and toxicological activities of two potentially CNS-acting medicinal plants of Piper genus. Exp. Toxicol. Pathol. 2012, 64, 9–14. [Google Scholar] [CrossRef]
- Bajpai, V.; Sharma, D.; Kumar, B.; Madhusudanan, K. Profiling of Piper betle Linn. cultivars by direct analysis in real time mass spectrometric technique. Biomed. Chromatogr. 2010, 24, 1283–1286. [Google Scholar] [CrossRef]
- Sudjaroen, Y. Evaluation of ethnobotanical vegetables and herbs in Samut Songkram province. Procedia Eng. 2012, 32, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Biswas, P.; Anand, U.; Saha, S.C.; Kant, N.; Mishra, T.; Masih, H.; Bar, A.; Pandey, D.K.; Jha, N.K.; Majumder, M. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J. Cell. Mol. Med. 2022, 26, 3083–3119. [Google Scholar] [CrossRef]
- Uddin, M.F.; Uddin, S.A.; Hossain, M.D.; Manchur, M.A. Antioxidant, cytotoxic and phytochemical properties of the ethanol extract of Piper betle leaf. Int. J. Pharm. Sci. Res. 2015, 6, 4252–4258. [Google Scholar]
- Rai, M.P.; Thilakchand, K.R.; Palatty, P.L.; Rao, P.; Rao, S.; Bhat, H.P.; Baliga, M.S. Piper betle Linn (betel vine), the maligned Southeast Asian medicinal plant possesses cancer preventive effects: Time to reconsider the wronged opinion. Asian Pac. J. Cancer Prev. 2011, 12, 2149–2156. [Google Scholar] [PubMed]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rekha, V.; Kollipara, M.; Gupta, B.; Bharath, Y.; Pulicherla, K.K. A review on Piper betle L.: Nature’s promising medicinal reservoir. Am. J. Ethnomed. 2014, 1, 276–289. [Google Scholar]
- Chaurasia, S.; Kulkarni, G.; Shetty, L. Phytochemical studies and in vitro cytotoxicity screening of Piper betle leaf (PBL) extract. Int. Res. J. Pharm. 2010, 1, 384–391. [Google Scholar]
- Pradhan, D.; Suri, K.; Pradhan, D.; Biswasroy, P. Golden heart of the nature: Piper betle L. J. Pharmacogn. Phytochem. 2013, 1, 147–167. [Google Scholar]
- Pin, K.; Chuah, A.L.; Rashih, A.A.; Mazura, M.; Fadzureena, J.; Vimala, S.; Rasadah, M. Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities. J. Trop. For. Sci. 2010, 22, 448–455. [Google Scholar]
- Arawwawala, L.; Arambewela, L.; Ratnasooriya, W. Gastroprotective effect of Piper betle Linn. leaves grown in Sri Lanka. J. Ayurveda Integr. Med. 2014, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Prakash, B.; Shukla, R.; Singh, P.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. Int. J. Food Microbiol. 2010, 142, 114–119. [Google Scholar] [CrossRef]
- Ghosh, R.; Darin, K.; Nath, P.; Deb, P. An overview of various Piper species for their biological activities. Int. J. Pharma Res. Rev. 2014, 3, 67–75. [Google Scholar]
- Gundala, S.R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M.D.; Aneja, R. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol. Appl. Pharmacol. 2014, 280, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Nouri, L.; Nafchi, A.M. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int. J. Biol. Macromol. 2014, 66, 254–259. [Google Scholar] [CrossRef]
- Shah, S.K.; Garg, G.; Jhade, D.; Patel, N. Piper betle: Phytochemical, pharmacological and nutritional value in health management. Int. J. Pharm. Sci. Rev. Res. 2016, 38, 181–189. [Google Scholar]
- Chan, E.W.C.; Wong, S.K. Phytochemistry and pharmacology of three Piper species: An update. Int. J. Pharmacogn. 2014, 1, 534–544. [Google Scholar]
- Sarma, C.; Rasane, P.; Kaur, S.; Singh, J.; Singh, J.; Gat, Y.; Garba, U.; Kaur, D.; Dhawan, K. Antioxidant and antimicrobial potential of selected varieties of Piper betle L.(Betel leaf). An. Acad. Bras. Ciências 2018, 90, 3871–3878. [Google Scholar] [CrossRef]
- Nur Sazwi, N.; Nalina, T.; Rahim, Z.H.A. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide. BMC Complementary Altern. Med. 2013, 13, 351. [Google Scholar] [CrossRef] [Green Version]
- Abrahim, N.N.; Kanthimathi, M.; Abdul-Aziz, A. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complementary Altern. Med. 2012, 12, 220. [Google Scholar] [CrossRef] [Green Version]
- Assis, A.; Brito, V.; Bittencourt, M.; Silva, L.; Oliveira, F.; Oliveira, R. Essential oils composition of four Piper species from Brazil. J. Essent. Oil Res. 2013, 25, 203–209. [Google Scholar] [CrossRef]
- Alves, C.M.G.; Nogueira, J.N.; Luz, J.G.R.; Chaves, F.C.M.; Tavares-Dias, M. Essential oil of Piper callosum, Piper hispidum and Piper marginatum (Piperaceae) possesses in vitro efficacy against monogeneans of Colossoma macropomum (tambaqui). Aquac. Res. 2021, 52, 6107–6116. [Google Scholar] [CrossRef]
- Orlandelli, R.; Alberto, R.; Rubin Filho, C.; Pamphile, J. Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet. Mol. Res. 2012, 11, 1575–1585. [Google Scholar] [CrossRef]
- Salleh, W.; Kassim, H.; Tawang, A. Traditional uses, chemical profile and biological activities of Piper hispidum Sw.: A review. Biointerface Res. Appl. Chem. 2021, 11, 13115–13129. [Google Scholar]
- Chahal, J.; Ohlyan, R.; Kandale, A.; Walia, A.; Puri, S. Introduction, phytochemistry, traditional uses and biological activity of genus Piper: A review. Int. J. Curr. Pharm. Rev. Res. 2011, 2, 130–144. [Google Scholar]
- Almeida, C.A.; Azevedo, M.; Chaves, F.; Roseo de Oliveira, M.; Rodrigues, I.A.; Bizzo, H.R.; Gama, P.E.; Alviano, D.S.; Alviano, C.S. Piper essential oils inhibit Rhizopus oryzae growth, biofilm formation, and rhizopuspepsin activity. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5295619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facundo, V.A.; Pollli, A.R.; Rodrigues, R.V.; Militão, J.S.T.; Stabelli, R.G.; Cardoso, C.T. Fixed and volatile chemical constituents from stems and fruits of Piper tuberculatum Jacq. and from roots of P. hispidum HBK. Acta Amaz. 2008, 38, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Moralesa, A.; Rojasa, J.; Moujirb, L.M.; Araujob, L.; Rondónc, M. Chemical composition, antimicrobial and cytotoxic activities of Piper hispidum Sw. essential oil collected in Venezuela. J. Appl. Pharm. Sci. 2013, 3, 016–020. [Google Scholar]
- Bezerra, D.P.; Moura, D.J.; Rosa, R.M.; de Vasconcellos, M.C.; e Silva, A.C.R.; de Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Henriques, J.A.P.; Costa-Lotufo, L.V. Evaluation of the genotoxicity of piplartine, an alkamide of Piper tuberculatum, in yeast and mammalian V79 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2008, 652, 164–174. [Google Scholar] [CrossRef]
- Cáceres, A.; Cruz, S.; Gaitán, I.; Guerrero, K.; Álvarez, L.; Marroquín, M. Antioxidant Activity and Quantitative Composition of Extracts of Piper species from Guatemala with Potential Use in Natural Product Industry; Acta Hort. 2011, 9, 77–84.
- Santos, M.R.A.d.; Silva, A.G.; Lima, R.A.; Lima, D.K.S.; Sallet, L.A.P.; Teixeira, C.A.D.; Polli, A.R.; Facundo, V.A. Inseticidal activity of Piper hispidum (Piperaceae) leaves extract on (Hypothenemus hampei). Braz. J. Bot. 2010, 33, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kamboj, J.; Sharma, S. Overview for various aspects of the health benefits of Piper longum linn. fruit. J. Acupunct. Meridian Stud. 2011, 4, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.K.; Khan, F.; Negi, A.S. Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J. Mol. Modeling 2012, 18, 2513–2525. [Google Scholar] [CrossRef]
- Yende, S.R.; Sannapuri, V.D.; Vyawahare, N.S.; Harle, U.N. Antirheumatoid activity of aqueous extract of Piper longum on freunds adjuvant-induced arthritis in rats. Int. J. Pharm. Sci. Res. 2010, 1, 129–133. [Google Scholar]
- Priya, N.; Kumari, P.S. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int. J. Pharm. Sci. Rev. Res. 2017, 44, 197–202. [Google Scholar]
- Singh, S.; Priyadarshi, A.; Singh, B.; Sharma, P. Pharmacognostical and phytochemical analysis of Pippali (Piper longum Linn.). Pharma Innov. J. 2018, 7, 286–289. [Google Scholar]
- Wiart, C. Lead Compounds from Medicinal Plants for the Treatment of Cancer; Academic Press: Cambridge, MA, USA, 2012; Volume 1. [Google Scholar]
- Evans, W.C.; Trease, G.E. Pharmacognosy; Saunders: London, UK, 2002. [Google Scholar]
- Yadav, R.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol. 2011, 3, 10–14. [Google Scholar]
- Zaveri, M.; Khandhar, A.; Patel, S.; Patel, A. Chemistry and pharmacology of Piper longum L. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 67–76. [Google Scholar]
- Khare, C. Indian Medicinal Plants: An Illustrated Dictionary; Springer Verlag: Berlin, Germany, 2007. [Google Scholar]
- Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci. 2013, 48, 453–463. [Google Scholar] [CrossRef]
- Chinta, G.; Syed, S.B.; Coumar, M.S.; Periyasamy, L. Piperine: A comprehensive review of pre-clinical and clinical investigations. Curr. Bioact. Compd. 2015, 11, 156–169. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Narasimha, G.; Sushma, N.J.; Dillip, G.; Reddy, B.; Sreedhar, B.; Raju, B. Biogenic preparation of gold nanostructures reduced from Piper longum leaf broth and their electrochemical studies. J. Nanosci. Nanotechnol. 2015, 15, 1280–1286. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Bandyopadhyay, S.; Ghosh, M.K.; Mukhopadhyay, S.; Roy, S.; Mandal, C. Natural products: Promising resources for cancer drug discovery. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2012, 12, 49–75. [Google Scholar] [CrossRef]
- Isikhuemen, E.; Ogbomwan, B.; Efenudu, I. Evaluation of phytochemical and mineral constituents of Piper guineense Schum. & Thonn. and Piper Umbellatum Linn: Implications for ethnomedicine. Eur. J. Med. Plants 2020, 31, 84–97. [Google Scholar]
- Saupi, N.; Lepun, P.; Alan, R.; Zakaria, M.H.; Saidin, A.A.; Yusli, N.A. Morphological characterization and nutrient assessment of wild pepper, Piper umbellatum L.(Piperaceae) grown in Sarawak, Malaysia. J. Phytol. 2021, 13, 55–63. [Google Scholar] [CrossRef]
- Kambiré, D.A.; Yapi, T.A.; Boti, J.B.; Garcia, G.; Tomi, P.; Bighelli, A.; Tomi, F. Chemical composition of leaf essential oil of Piper umbellatum and aerial part essential oil of Piper guineense from Côte d’Ivoire. Nat. Prod. Commun. 2019, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Roersch, C.M. Piper umbellatum L.: A comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. J. Ethnopharmacol. 2010, 131, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Junior, I.F.; Balogun, S.O.; de Oliveira, R.G.; Damazo, A.S.; de Oliveira Martins, D.T. Piper umbellatum L.: A medicinal plant with gastric-ulcer protective and ulcer healing effects in experimental rodent models. J. Ethnopharmacol. 2016, 192, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Jiofack, T.; Ayissi, I.; Fokunang, C.; Guedje, N.; Kemeuze, V. Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. Afr. J. Pharm. Pharmacol. 2009, 3, 144–150. [Google Scholar]
- Mensah, J.; Okoli, R.; Ohaju-Obodo, J.; Eifediyi, K. Phytochemical, nutritional and medical properties of some leafy vegetables consumed by Edo people of Nigeria. Afr. J. Biotechnol. 2008, 7, 2304–2309. [Google Scholar]
- Bieski, I.G.C.; Leonti, M.; Arnason, J.T.; Ferrier, J.; Rapinski, M.; Violante, I.M.P.; Balogun, S.O.; Pereira, J.F.C.A.; Figueiredo, R.d.C.F.; Lopes, C.R.A.S. Ethnobotanical study of medicinal plants by population of valley of Juruena region, legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol. 2015, 173, 383–423. [Google Scholar] [CrossRef]
- Bieski, I.G.C.; Rios Santos, F.; de Oliveira, R.M.; Espinosa, M.M.; Macedo, M.; Albuquerque, U.P.; de Oliveira Martins, D.T. Ethnopharmacology of medicinal plants of the pantanal region (Mato Grosso, Brazil). Evid.-Based Complementary Altern. Med. 2012, 2012, 272749. [Google Scholar] [CrossRef] [Green Version]
- López-Hortas, L.; Pérez-Larrán, P.; González-Muñoz, M.J.; Falqué, E.; Domínguez, H. Recent developments on the extraction and application of ursolic acid. A review. Food Res. Int. 2018, 103, 130–149. [Google Scholar] [CrossRef]
- Rodríguez, E.J.; Saucedo-Hernandez, Y.; Heyden, Y.V.; Simo-Alfonso, E.F.; Ramis-Ramos, G.; Lerma-García, M.J.; Monteagudo, U.; Bravo, L.; Medinilla, M.; de Armas, Y. Chemical analysis and antioxidant activity of the essential oils of three Piperaceae species growing in the central region of Cuba. Nat. Prod. Commun. 2013, 8, 1325–1328. [Google Scholar] [CrossRef] [Green Version]
- Arunachalam, K.; Damazo, A.S.; Macho, A.; da Silva Lima, J.C.; Pavan, E.; de Freitas Figueiredo, F.; Oliveira, D.M.; Cechinel-Filho, V.; Wagner, T.M.; de Oliveira Martins, D.T. Piper umbellatum L.(Piperaceae): Phytochemical profiles of the hydroethanolic leaf extract and intestinal anti-inflammatory mechanisms on 2, 4, 6 trinitrobenzene sulfonic acid induced ulcerative colitis in rats. J. Ethnopharmacol. 2020, 254, 112707. [Google Scholar] [CrossRef]
- Iwamoto, L.H.; Vendramini-Costa, D.B.; Monteiro, P.A.; Ruiz, A.L.T.G.; Sousa, I.M.d.O.; Foglio, M.A.; de Carvalho, J.E.; Rodrigues, R.A.F. Anticancer and anti-inflammatory activities of a standardized dichloromethane extract from Piper umbellatum L. leaves. Evid.-Based Complementary Altern. Med. 2015, 2015, 948737. [Google Scholar] [CrossRef]
- da Silva, I.F., Jr.; de Oliveira, R.G.; Soares, I.M.; da Costa Alvim, T.; Ascêncio, S.D.; de Oliveira Martins, D.T. Evaluation of acute toxicity, antibacterial activity, and mode of action of the hydroethanolic extract of Piper umbellatum L. J. Ethnopharmacol. 2014, 151, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Morandim-Giannetti, A.d.A.; Pin, A.R.; Pietro, N.A.S.; Oliveira, H.C.d.; Mendes-Giannini, M.J.S.; Alecio, A.C.; Kato, M.J.; Oliveira, J.E.d.; Furlan, M. Composition and antifungal activity against Candida albicans, C. parapsilopisis, Candida krusei and Cryptococcus neoformans of essential oils from leaves of Piper and Peperomia species. J. Med. Plant Res. 2010, 4, 1810–1814. [Google Scholar]
- de Ferraz, A.; Balbino, J.M.; Zini, C.A.; Ribeiro, V.L.S.; Bordignon, S.A.; von Poser, G. Acaricidal activity and chemical composition of the essential oil from three Piper species. Parasitol. Res. 2010, 107, 243–248. [Google Scholar] [CrossRef]
- Perigo, C.V.; Torres, R.B.; Bernacci, L.C.; Guimaraes, E.F.; Haber, L.L.; Facanali, R.; Vieira, M.A.; Quecini, V.; Marques, M.O.M. The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind. Crops Prod. 2016, 94, 528–539. [Google Scholar] [CrossRef]
- Santos, V.L.; Lima, C.P.; Campos, R.; Ribeiro, C.S.; Marques, F.A.; Budel, J.M.; Messias-Reason, I.J. Chemical composition and antimicrobial activity of volatile oils of Piper amalago L. Lat. Am. J. Pharm. 2016, 35, 1883–1889. [Google Scholar]
- Da Silva Mota, J.; de Souza, D.S.; Boone, C.V.; Lima Cardoso, C.A.; Bastos Caramão, E. Identification of the volatile compounds of leaf, flower, root and stem oils of Piper amalago (Piperaceae). J. Essent. Oil Bear. Plants 2013, 16, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Simeone, M.L.F.; Mikich, S.B.; Côcco, L.C.; Hansel, F.A.; Bianconi, G.V. Chemical composition of essential oils from ripe and unripe fruits of Piper amalago L. var. medium (Jacq.) Yunck and Piper hispidum Sw. J. Essent. Oil Res. 2011, 23, 54–58. [Google Scholar] [CrossRef]
- Verma, S.; Gupta, M.L.; Dutta, A.; Sankhwar, S.; Shukla, S.K.; Flora, S.J. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: An in vitro and in vivo assessment. Oxid. Med. Cell. Longev. 2010, 3, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Kaveti, B.; Tan, L.; Sarnnia, K.T.; Baig, M. Antibacterial activity of Piper betle leaves. Int. J. Pharm. Teach. Pract. 2011, 2, 129–132. [Google Scholar]
- Ma, G.-C.; Wu, P.-F.; Tseng, H.-C.; Chyau, C.-C.; Lu, H.-C.; Chou, F.-P. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages. Food Chem. 2013, 141, 3703–3713. [Google Scholar] [CrossRef]
- Deshpande, S.; Kadam, D. GCMS analysis and antibacterial activity of Piper betle (Linn) leaves against Streptococcus mutans. Asian J. Pharm. Clin. Res. 2013, 6, 99–101. [Google Scholar]
- Ali, A.; Lim, X.Y.; Chong, C.H.; Mah, S.H.; Chua, B.L. Optimization of ultrasound-assisted extraction of natural antioxidants from Piper betle using response surface methodology. LWT 2018, 89, 681–688. [Google Scholar] [CrossRef]
- Muruganandam, L.; Krishna, A.; Reddy, J.; Nirmala, G. Optimization studies on extraction of phytocomponents from betel leaves. Resour.-Effic. Technol. 2017, 3, 385–393. [Google Scholar]
- Venkadeswaran, K.; Thomas, P.A.; Geraldine, P. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet. Biomed. Pharmacother. 2016, 80, 276–288. [Google Scholar] [CrossRef]
- Lakshmi, B.S.; Naidu, K. Comparative morphoanatomy of Piper betle L. cultivars in India. Ann. Biol. Res. 2010, 1, 128–134. [Google Scholar]
- Karak, S.; Acharya, J.; Begum, S.; Mazumdar, I.; Kundu, R.; De, B. Essential oil of Piper betle L. leaves: Chemical composition, anti-acetylcholinesterase, anti-β-glucuronidase and cytotoxic properties. J. Appl. Res. Med. Aromat. Plants 2018, 10, 85–92. [Google Scholar] [CrossRef]
- Madhumita, M.; Guha, P.; Nag, A. Bio-actives of betel leaf (Piper betle L.): A comprehensive review on extraction, isolation, characterization, and biological activity. Phytother. Res. 2020, 34, 2609–2627. [Google Scholar] [CrossRef]
- Nayaka, N.M.D.M.W.; Sasadara, M.M.V.; Sanjaya, D.A.; Yuda, P.E.S.K.; Dewi, N.L.K.A.A.; Cahyaningsih, E.; Hartati, R. Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules 2021, 26, 2321. [Google Scholar] [CrossRef]
- Alighiri, D.; Cahyono, E.; Eden, W.T.; Kusuma, E.; Supardi, K.I. Study on the improvement of essential oil quality and its repellent activity of betel leaves oil (Piper betle L.) from Indonesia. Orient. J. Chem. 2018, 34, 2913. [Google Scholar] [CrossRef]
- Lima, R.N.; Santos, A.D.C.; Ribeiro, A.S.; Cardozo-Filho, L.; Freitas, L.S.; Barison, A.; Costa, E.V.; Alves, P.B. Selective amides extraction and biological activity from Piper hispidum leaves using the supercritical extraction. J. Supercrit. Fluids 2020, 157, 104712. [Google Scholar] [CrossRef]
- Ruiz, C.; Haddad, M.; Alban, J.; Bourdy, G.; Reategui, R.; Castillo, D.; Sauvain, M.; Deharo, E.; Estevez, Y.; Arevalo, J. Activity-guided isolation of antileishmanial compounds from Piper hispidum. Phytochem. Lett. 2011, 4, 363–366. [Google Scholar] [CrossRef]
- Costa, G.; Endo, E.; Cortez, D.; Nakamura, T.; Nakamura, C.; Dias Filho, B. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. J. Mycol. Médicale 2016, 26, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.L.; Chen, Y.; Zhang, H.; Huang, Y.; Krunic, A.; Orjala, J.; Veliz, M.; Soni, K.K.; Soejarto, D.D.; Caceres, A. Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae). J. Ethnopharmacol. 2010, 129, 220–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Wang, R.; Cheng, X.; Yang, J.; Yang, Y.; Qu, H.; Li, S.; Lin, S.; Wei, D.; Bai, Y. Chemical constituents from the fruits of Piper longum L. and their vascular relaxation effect on rat mesenteric arteries. Nat. Prod. Res. 2022, 36, 674–679. [Google Scholar] [CrossRef]
- Gani, H.M.O.; Hoq, M.O.; Tamanna, T. Ethnomedicinal, phytochemical and pharmacological properties of Piper longum (Linn). Asian J. Med. Biol. Res. 2019, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Varughese, T.; Unnikrishnan, P.K.; Deepak, M.; Balachandran, I.; Rema Shree, A. Chemical composition of the essential oils from stem, root, fruit and leaf of Piper longum Linn. J. Essent. Oil Bear. Plants 2016, 19, 52–58. [Google Scholar] [CrossRef]
- Tabopda, T.K.; Ngoupayo, J.; Liu, J.; Mitaine-Offer, A.-C.; Tanoli, S.A.K.; Khan, S.N.; Ali, M.S.; Ngadjui, B.T.; Tsamo, E.; Lacaille-Dubois, M.-A. Bioactive aristolactams from Piper umbellatum. Phytochemistry 2008, 69, 1726–1731. [Google Scholar] [CrossRef]
- Sacoman, J.; Monteiro, K.; Possenti, A.; Figueira, G.; Foglio, M.; Carvalho, J. Cytotoxicity and antitumoral activity of dichloromethane extract and its fractions from Pothomorphe umbellata. Braz. J. Med. Biol. Res. 2008, 41, 411–415. [Google Scholar] [CrossRef]
- Gülcin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ. Antioxidant activity of an Anatolian herbal tea—Origanum minutiflorum: Isolation and characterization of its secondary metabolites. Int. J. Food Prop. 2018, 21, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Hunyadi, A. The mechanism (s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Han, H.; Yilmaz, H.; Gulcin, I. Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Bulut, N.; Kocyigit, U.M.; Gecibesler, I.H.; Dastan, T.; Karci, H.; Taslimi, P.; Durna Dastan, S.; Gulcin, I.; Cetin, A. Synthesis of some novel pyridine compounds containing bis-1, 2, 4-triazole/thiosemicarbazide moiety and investigation of their antioxidant properties, carbonic anhydrase, and acetylcholinesterase enzymes inhibition profiles. J. Biochem. Mol. Toxicol. 2018, 32, e22006. [Google Scholar] [CrossRef]
- Adwas, A.A.; Elsayed, A.; Azab, A.; Quwaydir, F. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng 2019, 6, 43–47. [Google Scholar]
- El-Bahr, S.M. Biochemistry of free radicals and oxidative stress. Biochemistry 2013, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Ma, X.; He, P.; Sun, P.; Han, P. Lipoic acid: An immunomodulator that attenuates glycinin-induced anaphylactic reactions in a rat model. J. Agric. Food Chem. 2010, 58, 5086–5092. [Google Scholar] [CrossRef]
- He, L.; Eslamfam, S.; Ma, X.; Li, D. Autophagy and the nutritional signaling pathway. Front. Agric. Sci. Eng. 2016, 3, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Gongora, M.C.; Lob, H.E.; Landmesser, U.; Guzik, T.J.; Martin, W.D.; Ozumi, K.; Wall, S.M.; Wilson, D.S.; Murthy, N.; Gravanis, M. Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: A potential mechanism underlying adult respiratory distress syndrome. Am. J. Pathol. 2008, 173, 915–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.-C.; Hsu, Y.-C.; Chen, C.-C.; Lin, Y.-F.; Wu, C.-C. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid. Med. Cell. Longev. 2013, 2013, 301982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, P.; Ma, X.; Yin, J. The effects of lipoic acid on soybean. Arch. Anim. Nutr. 2010, 64, 254–264. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Moharram, H.; Youssef, M. Methods for determining the antioxidant activity: A review. Alex. J. Food Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Gülcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Nanditha, B.; Prabhasankar, P. Antioxidants in bakery products: A review. Crit. Rev. Food Sci. Nutr. 2008, 49, 1–27. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Koudelka, S.; Knotigova, P.T.; Masek, J.; Prochazka, L.; Lukac, R.; Miller, A.D.; Neuzil, J.; Turanek, J. Liposomal delivery systems for anti-cancer analogues of vitamin E. J. Control. Release 2015, 207, 59–69. [Google Scholar] [CrossRef]
- Anraku, M.; Gebicki, J.M.; Iohara, D.; Tomida, H.; Uekama, K.; Maruyama, T.; Hirayama, F.; Otagiri, M. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr. Polym. 2018, 199, 141–149. [Google Scholar] [CrossRef]
- Kornienko, J.S.; Smirnova, I.; Pugovkina, N.; Ivanova, J.S.; Shilina, M.; Grinchuk, T.; Shatrova, A.; Aksenov, N.; Zenin, V.; Nikolsky, N. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Saad, B.; Sing, Y.Y.; Nawi, M.A.; Hashim, N.; Ali, A.S.M.; Saleh, M.I.; Sulaiman, S.F.; Talib, K.M.; Ahmad, K. Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem. 2007, 105, 389–394. [Google Scholar] [CrossRef]
- Anbudhasan, P.; Surendraraj, A.; Karkuzhali, S.; Sathishkumaran, P. Natural antioxidants and its benefits. Int. J. Food Nutr. Sci. 2014, 3, 225. [Google Scholar]
- Le Coz, C.J.; Schneider, G.-A. Contact dermatitis from tertiary-butylhydroquinone in a hair dye, with cross-sensitivity to BHA and BHT. Contact Dermat. 1998, 39, 39–40. [Google Scholar] [CrossRef]
- Fetouh, F.A.; Azab, A.E.S. Ameliorating effects of curcumin and propolis against the reproductive toxicity of gentamicin in adult male guinea pigs: Quantitative analysis and morphological study. Am. J. Life Sci. 2014, 2, 138–149. [Google Scholar]
- Azab, A.E.; Albasha, M.O. Hepatoprotective effect of some medicinal plants and herbs against hepatic disorders induced by hepatotoxic agents. J. Biotechnol. Bioeng. 2018, 2, 8–23. [Google Scholar]
- Taghvaei, M.; Jafari, S.M. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 2015, 52, 1272–1282. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Ventanas, S.; Cava, R. Effect of natural and synthetic antioxidants on protein oxidation and colour and texture changes in refrigerated stored porcine liver pâté. Meat Sci. 2006, 74, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Rutter, K.; Sell, D.R.; Fraser, N.; Obrenovich, M.; Zito, M.; Starke-Reed, P.; Monnier, V.M. Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice. Int. J. Vitam. Nutr. Res. 2003, 73, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanum, F.; Anilakumar, K.; Viswanathan, K. Anticarcinogenic properties of garlic: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 479–488. [Google Scholar] [CrossRef]
- Avellone, G.; Di Garbo, V.; Campisi, D.; De Simone, R.; Raneli, G.; Scaglione, R.; Licata, G. Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis. Eur. J. Clin. Nutr. 2006, 60, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.A.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr. J. 2010, 25, 291–312. [Google Scholar] [CrossRef]
- Ravani, G.T.; dos Santos, V.L.; Miguel, O.G.; Budel, J.M.; Ranieri, C. Investigação Fitoquímica e antioxidante de partes vegetativas aéreas de Piper amalago L. Cad. Esc. Saúde 2013, 2, 164–177. [Google Scholar]
- Perumal, P.; Saravanabhavan, K. Antidiabetic and antioxidant activities of ethanolic extract of Piper betle L. leaves in catfish, Clarias gariepinus. Asian J. Pharm. Clin. Res. 2018, 11, 194–198. [Google Scholar]
- Barua, C.; Singh, A.; Sen, S.; Barua, A.; Barua, I. In vitro antioxidant and antimycobacterial activity of seeds of Piper longum Linn: A comparative study. SAJ Pharm. Pharmacol. 2014, 1, 1–11. [Google Scholar]
- Sultana, N.A.; Zilani, M.; Taraq, K.T.M.; Al-Din, M.K. Phytochemical, antibacterial and antioxidant activity of Piper longum leaves. PharmacologyOnLine 2019, 1, 27–35. [Google Scholar]
- Rameshkumar, K.; Aravind, A.A.; Mathew, P. Comparative phytochemical evaluation and antioxidant assay of Piper longum L. and Piper chaba hunter used in Indian traditional systems of medicine. J. Herbs Spices Med. Plants 2011, 17, 351–360. [Google Scholar] [CrossRef]
- Akbar, P.N.; Jahan, I.A.; Hossain, M.H.; Banik, R.; Nur, H.P.; Hossain, M.T. Antioxidant capacity of Piper longum and Piper nigrum fruits grown in Bangladesh. World J. Pharm. Sci. 2014, 2, 931–941. [Google Scholar]
- Aara, A.; Chappidi, V.; Ramadas, M.N. Antioxidant activity of eugenol in Piper betle leaf extract. J. Fam. Med. Prim. Care 2020, 9, 327. [Google Scholar] [CrossRef]
Compounds | RI | Relative Area (%) | ||||||
---|---|---|---|---|---|---|---|---|
RICalc [100,101] | RILit [100,101] | Unripe Fruit [101] | Ripe Fruit [101] | Flower [100] | Root [100] | Stem [100] | Leaf [100] | |
Ethyl isovalerate (15) | 858 | 858 | 2.9 | 0.4 | 0.1 | |||
Tricyclene (16) | 925 | 926 | 0.1 | 0.1 | ||||
α-Thujene (17) | 929 | 930 | 0.8 | 1.8 | ||||
α-Pinene (18) | 933 | 939 | 0.7 | 3.6 | ||||
Camphene (19) | 951 | 953 | 0.2 | |||||
Verbenene (20) | 967 | 968 | 0.1 | |||||
Sabinene (21) | 974 | 975 | 1.3 | 3.0 | 0.8 | 0.2 | ||
β-Pinene (22) | 980 | 979 | 0.2 | 0.6 | 1.2 | 3.6 | 1.8 | |
endo-Norborneol (23) | 985 | 986 | 1.5 | |||||
β-Myrcene (24) | 988 | 991 | 1.8 | 2.6 | ||||
Pyrazine 2,3,5-trimethyl (25) | 999 | 1000 | 0.4 | 0.4 | 0.4 | 0.2 | ||
δ-Carene (26) | 1001 | 1002 | 1.1 | 0.3 | ||||
α-Phellandrene (27) | 1008 | 1005 | 0.7 | |||||
p-Cymene (8) | 1024 | 1025 | 0.7 | 2.2 | 9.3 | 3.3 | 0.3 | 9.4 |
o-Cymene (28) | 1025 | 1026 | 1.1 | 3.2 | 2.1 | 0.2 | ||
Limonene (14) | 1029 | 1029 | 1.0 | 1.5 | 10.5 | 3.0 | 1.1 | 0.9 |
β-Phellandrene (6) | 1032 | 1031 | 8.2 | 7.3 | ||||
1.8-Cineole (29) | 1034 | 1033 | 0.3 | 0.1 | ||||
Acetyl pyridine (30) | 1034 | 1034 | 0.1 | |||||
(Z)-β-Ocimene (31) | 1037 | 1037 | 0.1 | <0.1 | 0.3 | 2.1 | 0.4 | |
γ-Terpinene (32) | 1058 | 1062 | <0.1 | |||||
cis-Sabinene hydrate (33) | 1072 | 1068 | <0.1 | |||||
Benzyl formate (34) | 1077 | 1076 | 0.2 | |||||
p-Mentha-2,4(8)-diene (35) | 1087 | 1086 | <0.1 | |||||
Terpinolene (36) | 1090 | 1089 | 2.4 | 1.6 | ||||
p-Cymenene (37) | 1092 | 1091 | 3.4 | |||||
Linalool (38) | 1101 | 1098 | 2.0 | 1.4 | ||||
cis-Pinene hydrate (39) | 1127 | 1121 | 0.06 | |||||
Pyrazine 3-methyl-2-isobutyl (40) | 1137 | 1137 | 0.3 | 0.2 | ||||
cis-β-Terpineol (41) | 1145 | 1144 | 0.04 | |||||
Menthol (42) | 1173 | 1172 | 1.1 | 0.2 | ||||
Borneol (43) | 1175 | 1165 | 0.1 | |||||
4-Terpineol (44) | 1183 | 1177 | 0.3 | 0.2 | ||||
α-Terpineol (45) | 1188 | 1189 | 0.2 | 0.5 | 1.3 | 1.2 | 0.1 | |
Cryptone (46) | 1191 | 1185 | 0.1 | 0.9 | ||||
trans-Dihydro carveol acetate (47) | 1308 | 1307 | 1.3 | 0.2 | ||||
iso-Verbenol acetate (48) | 1310 | 1310 | 0.7 | 3.2 | 5.1 | |||
(E)-Methyl geranate (9) | 1325 | 1325 | 1.1 | 1.3 | 2.3 | 7.8 | ||
γ-Elemene (49) | 1335 | 1339 | 0.4 | 0.5 | ||||
Presilphiperfol-7-ene (50) | 1337 | 1337 | 3.3 | 0.4 | ||||
α-Cubebene (51) | 1347 | 1351 | 0.2 | 0.1 | ||||
(Z)-β-Damascenone (52) | 1364 | 1364 | 0.6 | 0.6 | 0.2 | |||
Cyclosativene (53) | 1371 | 1371 | 0.1 | <0.1 | 1.2 | 0.2 | ||
Longicyclene (54) | 1373 | 1374 | 1.2 | 2.2 | 2.1 | 0.2 | ||
α-Copaene (55) | 1376 | 1376 | 3.0 | 0.7 | ||||
Silphiperfol-6-ene (56) | 1379 | 1378 | 13.5 | 2.4 | ||||
β-Bourbonene (57) | 1384 | 1384 | 0.2 | 0.2 | ||||
β-Cubebene (58) | 1388 | 1390 | 3.3 | 2.5 | ||||
β-Elemene (59) | 1390 | 1391 | 0.5 | |||||
Sativene (60) | 1392 | 1392 | 1.1 | 0.2 | 0.1 | |||
Longifolene (61) | 1407 | 1408 | 1.2 | 2.3 | 6.6 | 3.0 | ||
α-Gurjunene (62) | 1411 | 1410 | 0.5 | 4.4 | 1.1 | |||
β-Funebrene (63) | 1416 | 1415 | 1.3 | 0.3 | ||||
β-Caryophyllene (10) | 1420 | 1418 | 2.6 | 2.7 | ||||
β-Cedrene (2) | 1421 | 1421 | 0.4 | 1.1 | 0.2 | |||
β-Duprezianene (64) | 1423 | 1423 | 1.0 | 1.0 | 0.4 | |||
β-Copaene (65) | 1433 | 1432 | 1.2 | 1.2 | ||||
β-Gurjunene (66) | 1434 | 1434 | 0.2 | 1.2 | 1.2 | 0.2 | ||
Aromadendrene (67) | 1441 | 1441 | 0.1 | <0.1 | 1.1 | 1.1 | 0.2 | |
(Z)-β-Farnesene (68) | 1443 | 1443 | 2.4 | 1.4 | ||||
Cedrane (69) | 1444 | 1444 | 2.5 | 0.8 | ||||
epi-β-Santalene (70) | 1448 | 1447 | 0.5 | |||||
cis-Muurola-3, 5-diene (71) | 1450 | 1450 | 1.4 | 1.1 | 0.1 | |||
α-Himachalene (72) | 1451 | 1451 | 1.6 | 0.5 | ||||
α-Humulene (73) | 1456 | 1454 | 1.0 | 0.8 | ||||
α-Patchoulene (74) | 1457 | 1457 | 3.9 | |||||
allo-Aromadendrene (75) | 1459 | 1460 | 7.0 | 0.1 | ||||
Seychellene (76) | 1460 | 1460 | <0.1 | |||||
cis-Muurola-4(14),5-diene (77) | 1468 | 1467 | 0.5 | 2.2 | 1.2 | 0.5 | ||
β-Acoradiene (78) | 1471 | 1471 | 1.2 | 1.1 | ||||
γ-Himachalene (79) | 1475 | 1476 | 2.3 | |||||
trans-Cadina-1(6),4-diene (80) | 1477 | 1477 | 1.3 | 0.3 | ||||
β-Chamigrene (81) | 1478 | 1478 | 1.3 | 1.3 | ||||
γ-Muurolene (82) | 1479 | 1480 | 2.1 | 0.1 | 0.1 | |||
α-Amorphene (7) | 1485 | 1485 | 2.0 | 14.4 | 23.3 | 25.7 | ||
Germacrene D (83) | 1485 | 1485 | 2.0 | 1.0 | 18.5 | 0.2 | ||
trans-Muurola-4(14),5-diene (84) | 1494 | 1494 | 0.6 | 1.6 | 1.5 | 1.1 | ||
Bicyclogermacrene (85) | 1496 | 1496 | 9.1 | 3.0 | ||||
γ-Amorphene (86) | 1496 | 1496 | 0.3 | |||||
Valencene (87) | 1497 | 1496 | 0.3 | 1.1 | ||||
α-Muurolene (88) | 1501 | 1500 | 1.5 | <0.1 | 0.5 | 1.2 | 1.2 | |
Epizonarene (89) | 1502 | 1502 | 0.3 | |||||
Germacrene A (90) | 1507 | 1503 | 0.9 | 0.7 | ||||
(Z)-α-Bisabolene (91) | 1507 | 1507 | 4.8 | |||||
Cuparene (92) | 1505 | 1505 | 3.6 | |||||
γ-Cadinene (93) | 1514 | 1514 | 0.9 | 0.9 | 1.3 | 2.3 | ||
Myristicin (94) | 1519 | 1519 | 0.2 | |||||
cis-Calamenene (95) | 1521 | 1521 | <0.1 | |||||
Eugenyl acetate (96) | 1523 | 1523 | 0.2 | |||||
δ-Cadinene (97) | 1523 | 1523 | 6.6 | 2.3 | 1.4 | 2.4 | ||
α-Calacorene (98) | 1542 | 1542 | <0.1 | |||||
α-Elemol (99) | 1549 | 1550 | 0.5 | |||||
Italicene epoxide (100) | 1549 | 1549 | 3.0 | |||||
(E)-Nerolidol (5) | 1561 | 1564 | 14.2 | 19.9 | ||||
epi-Longipinanol (101) | 1564 | 1564 | 4.8 | |||||
(Z)-Isoelemicin (102) | 1570 | 1570 | 1.2 | |||||
Germacrene d-4-ol (3) | 1578 | 1576 | 10.3 | 12.7 | ||||
Spathulenol (103) | 1578 | 1578 | 3.4 | 1.0 | ||||
Caryophyllene oxide (104) | 1583 | 1581 | 0.7 | 0.5 | ||||
Thujopsan-2-β-ol (105) | 1587 | 1587 | 0.2 | |||||
Globulol (106) | 1588 | 1583 | 0.8 | |||||
Carotol (107) | 1595 | 1595 | 1.4 | 1.1 | ||||
Guaiol (108) | 1600 | 1601 | 1.2 | 1.1 | 0.1 | |||
1,10-epi-Cubenol (109) | 1619 | 1619 | 1.9 | 1.5 | 1.5 | |||
epi-Cedrol (110) | 1619 | 1619 | 1.5 | |||||
Eremoligenol (111) | 1631 | 1631 | 2.6 | 3.0 | ||||
γ-Eudesmol (112) | 1632 | 1632 | 2.3 | |||||
α-Acorenol (113) | 1633 | 1633 | 1.2 | 2.1 | 2.3 | 3.1 | 0.6 | |
β-Acorenol (114) | 1637 | 1637 | <0.1 | 2.4 | 1.4 | |||
Cubenol (115) | 1643 | 1643 | 6.2 | |||||
epi-α-Cadinol (116) | 1644 | 1640 | 6.1 | 4.9 | ||||
α-Muurolol (117) | 1645 | 1646 | 2.6 | 2.1 | 5.0 | 6.3 | 9.3 | |
epi-α-Muurolol (118) | 1646 | 1641 | 1.5 | |||||
α-Cadinol (1) | 1658 | 1653 | 11.1 | 8.2 | ||||
neo-Intermedeol (119) | 1661 | 1660 | 1.8 | 0.6 | ||||
Bulnesol (120) | 1672 | 1672 | 1.3 | |||||
α-Bisabolol (121) | 1682 | 1683 | <0.1 | |||||
neo-5-Cedranol (122) | 1685 | 1685 | 0.1 | |||||
Oplopanone (123) | 1737 | 1733 | 0.1 | 3.9 | ||||
Khusinol acetate (124) | 1829 | 1816 | <0.1 |
P. betle Leaves Extract | Compounds | References |
---|---|---|
Chloroform extract was identified using nuclear magnetic resonance (NMR) | 1-n-dodecanyloxy resorcinol (130) | [15] |
Ethanol extract using ultrasound-assisted extraction | Isoeugenol (131), eugenol (129), hydroxychavicol (132) | [106] |
Soxhlet extraction | 4-Allyl-1,2-diacetoxybenzene (133), 4-chromanol (127), hydroxychavicol (132), eugenol (129) | [107] |
Hexane, ethyl acetate, and ethanol extract | Eugenol (129), 4-Allyl-1,2-diacetoxybenzene (133) | [108] |
Crude aqueous extract | Benzeneacetic acid (134), eugenol (129), hexadecanoic acid (135), octadecanoic acid (136), hydroxychavicol (132) | [109] |
Classification [112] | Compounds | Rt. (min.) [113] | Percentage (%) [113] | Rt. (min.) [48] | Percentage (%) [48] |
---|---|---|---|---|---|
Monoterpenes | α-Pinene (18) | 3.874 | 0.34 | 9.6 | 0.09 |
Camphene (19) | 10.150 | 0.09 | |||
Limonene (14) | 13.100 | 0.28 | |||
Sabinene (21) | 4.290 | 0.83 | |||
γ-Muurolene (82) | 3.761 | 0.34 | |||
β-Myrcene (24) | 4.425 | 0.61 | |||
α-Phellandrene (27) | 5.176 | 1.19 | |||
(E)-β-Ocimene (144) | 5.403 | 0.10 | |||
γ-Terpinene (32) | 5.722 | 0.99 | |||
α-Terpineol (45) | 5.846 | 0.15 | |||
Terpinolene (36) | 6.467 | 0.23 | |||
Linalool (38) | 6.548 | 0.71 | |||
Sesquiterpenes | Germacrene D (83) | 21.020 | 0.75 | 34.251 | 2.85 |
Germacrene B (145) | 34.876 | 0.81 | |||
γ-Muurolene (82) | 20.912 | 2.84 | 33.926 | 1.27 | |
α-Humulene (73) | 20.269 | 3.03 | 33.01 | 0.68 | |
β-Caryophyllene (10) | 19.291 | 4.13 | 31.501 | 4.22 | |
β-Elemene (59) | 18.378 | 0.61 | 30.176 | 0.24 | |
Ledane (146) | 39.001 | 0.18 | |||
Globulol (106) | 40.126 | 0.12 | |||
γ-Cadinene (93) | 14.978 | 5.87 | 40.926 | 3.85 | |
α-Copaene (55) | 17.957 | 0.83 | |||
Aromadendrene (67) | 20.442 | 0.07 | |||
β-Selinene (147) | 21.225 | 5.52 | |||
δ-Cadinene (97) | 22.171 | 0.72 | |||
Caryophyllene Epoxide (148) | 23.521 | 0.16 | |||
Phenylpropanoids | Chavicol (149) | 12.517 | 6.64 | 23.275 | 0.55 |
Eugenol (129) | 16.461 | 0.17 | 28.851 | 63.39 | |
Methyl eugenol (140) | 30.426 | 0.21 | |||
Acetyl eugenol (150) | 21.522 | 9.62 | 35.826 | 14.05 | |
Isoestragole (151) | 9.968 | 0.52 | |||
Isoeugenol (131) | 17.114 | 20.71 | |||
Chavicol acetate (152) | 16.120 | 17.75 | |||
Acetyl Isoeugenol (153) | 21.603 | 3.96 | |||
Aldehydes | Decanal (154) | 20.975 | 0.18 | ||
Undecanal (155) | 30.576 | 0.43 | |||
Phenyl acetaldehyde (156) | 13.650 | 0.13 |
Compounds | Content Essential Oil of P. hispidum (%) | ||
---|---|---|---|
[57] | [58] | [64] | |
(E)-3-Hexen-1-ol (166) | 1.0 | ||
α-Thujene (17) | 0.1 | ||
α-Pinene (18) | 6.6 | 1.2 | 15.3 |
Sabinene (21) | 0.3 | ||
β-Pinene (22) | 12.0 | 1.1 | 14.8 |
Sylvestrene (167) | 1.7 | ||
(Z)-β-Ocimene (31) | 1.4 | ||
trans-Sabinene hydrate (168) | 0.5 | ||
Terpinen-4-ol (169) | 0.3 | 1.0 | |
iso-Dihydrocarveol (170) | 0.4 | ||
Camphene (19) | 0.1 | 0.4 | |
6-Methyl-5-heptene-2-one (171) | 0.5 | ||
β-Myrcene (24) | 1.2 | 0.9 | |
α-Phellandrene (27) | 0.5 | ||
δ-Carene (26) | 6.9 | ||
α-Terpinene (142) | 14.0 | ||
p-Cymene (8) | 12.0 | 2.3 | |
β-Phellandrene (6) | 1.4 | 0.3 | |
γ-Terpinene (32) | 30.9 | ||
Terpinolene (36) | 7.3 | ||
Verbenene (20) | 0.5 | ||
Limonene (14) | 2.3 | ||
1,3,8-p-Menthatriene (172) | 0.2 | ||
(E)-Pinocarveol (173) | 0.5 | ||
Aromadendrene (67) | 1.4 | ||
δ-Elemene (11) | 0.3 | ||
α-Cubebene (51) | 0.4 | ||
α-Humulene (73) | 0.4 | 0.6 | |
β-Elemene (59) | 8.1 | ||
α-Copaene (55) | 0.9 | 0.5 | 1.8 |
β-Cubebene (58) | 0.5 | ||
α-Gurjunene (62) | 1.0 | ||
β-Gurjunene (66) | 0.8 | ||
γ-Gurjunene (174) | 0.4 | ||
β-Caryophyllene (10) | 5.3 | 6.2 | |
Khusimene (175) | 12.1 | ||
α-neo-Clovene (176) | 1.1 | ||
β-Chamigrene (81) | 1.6 | ||
(E)-Ocimenone (177) | 0.6 | ||
cis-Calamenene (95) | 0.6 | ||
cis-β-Guaiene (178) | 1.3 | ||
β-Selinene (147) | 1.0 | 8.1 | |
β-Bourbonene (57) | 0.5 | ||
Valencene (87) | 2.0 | 0.9 | |
Myrtenol (179) | 0.6 | ||
Viridiflorene (180) | 3.4 | 1.0 | |
α-Selinene (181) | 3.6 | 9.0 | |
Epizonarene (89) | 0.1 | ||
γ-Cadinene (93) | 13.2 | 0.4 | 0.8 |
δ-Cadinene (97) | 6.3 | ||
α-Muurolene (88) | 0.2 | ||
Selina-3,7(11)-diene (182) | 0.6 | ||
Germacrene A (90) | 0.9 | ||
Germacrene B (145) | 0.3 | 5.2 | |
Ledol (183) | 8.8 | ||
Globulol (106) | 0.7 | 1.2 | |
7-epi-α-selinene (184) | 0.2 | ||
Viridifloral (185) | 3.0 | ||
10-epi-Eudesmol (186) | 1.1 | ||
β-Eudesmol (187) | 2.6 | ||
Hinesol (188) | 0.3 | ||
Cubenol (115) | 4.2 | ||
Selin-11-en-4-α-ol (189) | 1.9 | 2.0 | |
epi-α-Cadinol (116) | 0.5 | ||
Guaiol acetate (190) | 0.6 | ||
Spathulenol (103) | 5.0 | ||
Caryophyllene oxide (104) | 7.8 |
Compounds | Part Used | Compounds | Part Used |
---|---|---|---|
Piperrolein B (197) | Fruit | Cepharadione B (203) | Root |
Dehydropipernonaline (198) | Fruit | Cepharadione A (204) | Root |
Rosin (199) | Fruit | Methylpiperate (205) | Fruit |
Piperchabaoside A (200) | Fruit | (+)-Diaeudesmin (206) | Seed |
Sylvatine (201) | Seed | Aristolactam (207) | Root |
Sesamin (202) | Seed | Piperoctadecalidine (208) | Fruit |
Compound | Content Essential Oil of P. longum (%) | |||
---|---|---|---|---|
Root | Stem | Fruit | Leaf | |
α-Pinene (18) | 11.8 | 14.0 | 15.3 | 0.3 |
Camphene (19) | 13.9 | 6.6 | 0.7 | |
β-Pinene (22) | 26.4 | 34.8 | 43.1 | 1.6 |
β-Myrcene (24) | 1.5 | 1.6 | 1.4 | |
α-Phellandrene (27) | 0.2 | 0.4 | ||
β-Phellandrene (6) | 1.0 | 0.7 | 1.4 | |
Limonene (14) | 6.3 | 10.3 | 9.6 | 0.7 |
1,8-Cineole (29) | 0.9 | 0.8 | ||
(E)-β-Ocimene (144) | 0.7 | 0.6 | ||
(Z)-β-Ocimene (31) | 0.9 | 0.8 | ||
Terpinolene (36) | 0.4 | 0.5 | ||
Linalool (38) | 0.8 | 1.1 | 1.2 | |
1-Methylhexyl acetate (209) | 2.5 | 0.3 | ||
2-Nonanone (210) | 1.3 | |||
α-Terpineol (45) | 0.4 | 0.5 | ||
Decanal (154) | 0.3 | |||
Bornyl acetate (211) | 10.0 | 5.0 | 0.6 | |
2-Undecanone (212) | 0.8 | 1.0 | 2.9 | 2.0 |
Tridecane (213) | 0.6 | 0.7 | ||
δ-Elemene (11) | 5.8 | 1.6 | ||
γ-Elemene (49) | 1.4 | |||
Terpinyl acetate (214) | 1.1 | 0.5 | ||
α-Copaene (55) | 0.9 | |||
β-Cubebene (58) | 2.3 | |||
β-Elemene (59) | 0.1 | 1.4 | ||
Dodecanal (215) | 0.4 | |||
β-Caryophyllene (10) | 5.6 | 9.3 | 5.7 | 16.8 |
cis-β-Guaiene (178) | 0.6 | |||
α-Gurjunene (62) | 0.8 | 2.6 | ||
α-Humulene (73) | 0.4 | 2.3 | 5.8 | |
(Z)-α-Farnesene (216) | 0.3 | |||
γ-Muurolene (82) | 0.6 | |||
1-Pentadecene (217) | 0.6 | |||
2-Tridecanone (218) | 0.9 | 0.4 | ||
Pentadecane (219) | 5.0 | 0.7 | ||
α-Muurolene (88) | 1.8 | |||
β-Patchoulene (220) | 0.7 | 0.8 | ||
γ-Bisabolene (221) | 0.6 | |||
γ-Cadinene (93) | 0.8 | |||
(E)-Nerolidol (5) | 1.0 | 2.2 | 8.8 | 22.5 |
α-Elemol (99) | 0.6 | |||
Germacrene A (90) | 0.5 | |||
Caryophyllene oxide (104) | 1.1 | 0.9 | 2.1 | |
δ-Cadinol (222) | 0.1 | 1.9 | ||
α-Cadinol (1) | 0.5 | |||
β-Eudesmol (187) | 3.3 | |||
α-Eudesmol (223) | 0.7 | |||
Heptadecane (224) | 0.4 | - | ||
9-Eicosyne (225) | 1.5 |
Compounds | Plant Part | References |
---|---|---|
N-Hydroxyaristolam II (230) | Branches | [121] |
Acacetin-7-O-β-D-galactopyranoside (231) | Branches | [121] |
Rhoifolin (232) | Branches | [121] |
Campestrol (233) | Aerial parts | [122] |
β-Sitosterol (234) | Aerial parts | [122] |
Stigmasterol (235) | Aerial parts | [122] |
4-Nerolidylcatechol (236) | Roots | [121] |
N-p-Coumaroyl tyramine (237) | Branches | [121] |
N-trans-Feruloyl tyramine (238) | Branches | [121] |
Components | Ria | RIp | Percentage (%) |
---|---|---|---|
α-Pinene (18) | 931 | 1020 | 0.2 |
6-Methyl-hept-5-en-2-one (239) | 961 | 1344 | 0.1 |
Sabinene (21) | 966 | 1127 | 0.1 |
β-Pinene (22) | 972 | 1117 | 0.5 |
β-Myrcene (24) | 981 | 1165 | 0.5 |
α-Phellandrene (27) | 998 | 1171 | 0.2 |
δ-Carene (26) | 1006 | 1154 | 0.1 |
p-Cymene (8) | 1012 | 1277 | 0.3 |
Limonene (14) | 1022 | 1207 | 12.5 |
1, 8-Cineole (29) | 1022 | 1216 | 0.1 |
(Z)-β-Ocimene (31) | 1025 | 1237 | 0.5 |
(E)-β-Ocimene (144) | 1036 | 1254 | 0.2 |
γ-Terpinene (32) | 1049 | 1250 | 0.1 |
Octan-1-ol (240) | 1052 | 1552 | 0.1 |
Terpinolene (36) | 1079 | 1289 | 0.1 |
Linalool (38) | 1085 | 1552 | 41.1 |
Camphor (241) | 1123 | 1527 | 0.1 |
4-Terpineol (44) | 1163 | 1597 | 0.3 |
α-Terpineol (45) | 1173 | 1703 | 1.1 |
Nerol (242) | 1207 | 1798 | 0.1 |
Neral (243) | 1210 | 1676 | 0.2 |
Geraniol (244) | 1234 | 1842 | 0.1 |
Safrole (138) | 1263 | 1861 | 0.1 |
Thymol (245) | 1267 | 2193 | 4.3 |
α-Copaene (55) | 1377 | 1497 | 0.1 |
β-Elemene (59) | 1389 | 1595 | 0.5 |
β-Caryophyllene (10) | 1421 | 1605 | 19.3 |
γ-Elemene (49) | 1429 | 1635 | 0.2 |
trans-α-Bergamotene (246) | 1435 | 1579 | 0.2 |
(E)-β-Farnesene (247) | 1447 | 1669 | 0.2 |
α-Humulene (73) | 1453 | 1676 | 1.3 |
γ-Muurolene (82) | 1472 | 1693 | 0.2 |
Germacrene D (83) | 1478 | 1703 | 1.2 |
β-Selinene (147) | 1484 | 1715 | 0.9 |
Bicyclogermacrene (85) | 1493 | 1728 | 0.9 |
(E)-α-Farnesene (248) | 1496 | 1752 | 1.2 |
β-Bisabolene (249) | 1501 | 1723 | 0.8 |
β-Sesquiphellandrene (250) | 1508 | 1762 | 0.2 |
δ-Cadinene (97) | 1516 | 1752 | 0.3 |
β-Elemol (251) | 1535 | 2071 | 0.3 |
(E)-Nerolidol (5) | 1548 | 2045 | 4.3 |
Caryophyllene oxide (104) | 1573 | 1993 | 0.8 |
Humulene oxide II (252) | 1597 | 2050 | 0.1 |
γ-Eudesmol (112) | 1620 | 2176 | 0.1 |
β-Eudesmol (187) | 1632 | 2238 | 0.1 |
α-Eudesmol (223) | 1637 | 2228 | 0.1 |
(E)-Phytol (253) | 2099 | 2613 | 1.8 |
Five Piper Species | Sample | Test Methods Antioxidant IC50 (μg/mL) | References | |||
---|---|---|---|---|---|---|
DPPH | ABTS | SA | NO | |||
P. amalago leaves | Ethanol | 28.09 | [66,163] | |||
Methanol | 675 | 370 | ||||
Dichloromethane | 327 | 392 | ||||
P. amalago roots | Methanol | 368 | 351 | [66] | ||
Dichloromethane | 371 | 509 | ||||
P. betle leaves | Methanol | 16.33 | [13,40,55,56,160,164] | |||
345.7 | 288.3 | 143.3 | ||||
Ethyl acetate | 40 | 48.3 | 52.3 | |||
23.25 | 79 | |||||
Hexane | 144.3 | 94.3 | ||||
Aqueos | 79.3 | 57.7 | ||||
179.5 | ||||||
Ethanol | 151.36 | |||||
9.36 | 6.61 | |||||
P. hispidum leaves | Methanol | 404 | 498 | [66] | ||
Dichloromethane | 391 | 158 | ||||
P. hispidum roots | Methanol | 317 | 131 | [66] | ||
Dichloromethane | 263 | 164 | ||||
P. longum seeds | Ethanol | 50 | 80 | [165] | ||
Chloroform | 6 | 76 | ||||
Hexane | 70 | 80 | ||||
Ethyl acetate | 54 | 80 | ||||
Aqueos | 19.5 | |||||
Hydroethanol | 26 | |||||
P. longum leaves | Methanol | 149.92 | [166] | |||
P. longum fruits | Methanol | 220.3 | 52.0 | [167,168] | ||
Ethanol | 89.8 | 238.4 | 482.3 | |||
Water | 118.29 | 364.2 | 381.5 | |||
P. umbellatum leaves | Methanol | 312 | 423 | [66] | ||
Dichloromethane | 226 | 122 | ||||
P. umbellatum roots | Methanol | 199 | 228 | [66] | ||
Dichloromethane | 19 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carsono, N.; Tumilaar, S.G.; Kurnia, D.; Latipudin, D.; Satari, M.H. A Review of Bioactive Compounds and Antioxidant Activity Properties of Piper Species. Molecules 2022, 27, 6774. https://doi.org/10.3390/molecules27196774
Carsono N, Tumilaar SG, Kurnia D, Latipudin D, Satari MH. A Review of Bioactive Compounds and Antioxidant Activity Properties of Piper Species. Molecules. 2022; 27(19):6774. https://doi.org/10.3390/molecules27196774
Chicago/Turabian StyleCarsono, Nono, Sefren Geiner Tumilaar, Dikdik Kurnia, Diding Latipudin, and Mieke Hermiawati Satari. 2022. "A Review of Bioactive Compounds and Antioxidant Activity Properties of Piper Species" Molecules 27, no. 19: 6774. https://doi.org/10.3390/molecules27196774
APA StyleCarsono, N., Tumilaar, S. G., Kurnia, D., Latipudin, D., & Satari, M. H. (2022). A Review of Bioactive Compounds and Antioxidant Activity Properties of Piper Species. Molecules, 27(19), 6774. https://doi.org/10.3390/molecules27196774